-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconvert_mlt.py
160 lines (123 loc) · 4.93 KB
/
convert_mlt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import json
import os
import os.path as osp
from glob import glob
import numpy as np
from PIL import Image
from seed_everything import seedEverything # seed를 주는 부분
from torch.utils.data import ConcatDataset, DataLoader, Dataset
from tqdm import tqdm
seedEverything(2022) # seed를 주는 부분
SRC_DATASET_DIR = "/data/datasets/ICDAR17_MLT" # FIXME
DST_DATASET_DIR = "/data/datasets/ICDAR17_Korean" # FIXME
NUM_WORKERS = 32 # FIXME
IMAGE_EXTENSIONS = {".gif", ".jpg", ".png"}
LANGUAGE_MAP = {"Korean": "ko", "Latin": "en", "Symbols": None}
def get_language_token(x):
return LANGUAGE_MAP.get(x, "others")
def maybe_mkdir(x):
if not osp.exists(x):
os.makedirs(x)
class MLT17Dataset(Dataset):
def __init__(self, image_dir, label_dir, copy_images_to=None):
image_paths = {
x
for x in glob(osp.join(image_dir, "*"))
if osp.splitext(x)[1] in IMAGE_EXTENSIONS
}
label_paths = set(glob(osp.join(label_dir, "*.txt")))
assert len(image_paths) == len(label_paths)
sample_ids, samples_info = list(), dict()
for image_path in image_paths:
sample_id = osp.splitext(osp.basename(image_path))[0]
label_path = osp.join(label_dir, "gt_{}.txt".format(sample_id))
assert label_path in label_paths
words_info, extra_info = self.parse_label_file(label_path)
if "ko" not in extra_info["languages"] or extra_info[
"languages"
].difference({"ko", "en"}):
continue
sample_ids.append(sample_id)
samples_info[sample_id] = dict(
image_path=image_path, label_path=label_path, words_info=words_info
)
self.sample_ids, self.samples_info = sample_ids, samples_info
self.copy_images_to = copy_images_to
def __len__(self):
return len(self.sample_ids)
def __getitem__(self, idx):
sample_info = self.samples_info[self.sample_ids[idx]]
image_fname = osp.basename(sample_info["image_path"])
image = Image.open(sample_info["image_path"])
img_w, img_h = image.size
if self.copy_images_to:
maybe_mkdir(self.copy_images_to)
image.save(
osp.join(self.copy_images_to, osp.basename(sample_info["image_path"]))
)
license_tag = dict(
usability=True, public=True, commercial=True, type="CC-BY-SA", holder=None
)
sample_info_ufo = dict(
img_h=img_h,
img_w=img_w,
words=sample_info["words_info"],
tags=None,
license_tag=license_tag,
)
return image_fname, sample_info_ufo
def parse_label_file(self, label_path):
def rearrange_points(points):
start_idx = np.argmin([np.linalg.norm(p, ord=1) for p in points])
if start_idx != 0:
points = np.roll(points, -start_idx, axis=0).tolist()
return points
with open(label_path, encoding="utf-8") as f:
lines = f.readlines()
words_info, languages = dict(), set()
for word_idx, line in enumerate(lines):
items = line.strip().split(",", 9)
language, transcription = items[8], items[9]
points = np.array(items[:8], dtype=np.float32).reshape(4, 2).tolist()
points = rearrange_points(points)
illegibility = transcription == "###"
orientation = "Horizontal"
language = get_language_token(language)
words_info[word_idx] = dict(
points=points,
transcription=transcription,
language=[language],
illegibility=illegibility,
orientation=orientation,
word_tags=None,
)
languages.add(language)
return words_info, dict(languages=languages)
def main():
dst_image_dir = osp.join(DST_DATASET_DIR, "images")
# dst_image_dir = None
mlt_train = MLT17Dataset(
osp.join(SRC_DATASET_DIR, "raw/ch8_training_images"),
osp.join(SRC_DATASET_DIR, "raw/ch8_training_gt"),
copy_images_to=dst_image_dir,
)
mlt_valid = MLT17Dataset(
osp.join(SRC_DATASET_DIR, "raw/ch8_validation_images"),
osp.join(SRC_DATASET_DIR, "raw/ch8_validation_gt"),
copy_images_to=dst_image_dir,
)
mlt_merged = ConcatDataset([mlt_train, mlt_valid])
anno = dict(images=dict())
with tqdm(total=len(mlt_merged)) as pbar:
for batch in DataLoader(
mlt_merged, num_workers=NUM_WORKERS, collate_fn=lambda x: x
):
image_fname, sample_info = batch[0]
anno["images"][image_fname] = sample_info
pbar.update(1)
ufo_dir = osp.join(DST_DATASET_DIR, "ufo")
maybe_mkdir(ufo_dir)
with open(osp.join(ufo_dir, "train.json"), "w") as f:
json.dump(anno, f, indent=4)
if __name__ == "__main__":
main()