-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmerging-flux.cxx
267 lines (205 loc) · 9.33 KB
/
merging-flux.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include <bout/physicsmodel.hxx>
#include <bout/constants.hxx>
#include <invert_laplace.hxx>
#include <field_factory.hxx>
///////////////////////////////////////////////////////
// Add a function coil_greens(Rc, Zc, R, Z) to the
// input expression parser. This calculates the magnetic flux
// due to a single-turn toroidal coil.
// Note: C++17 includes elliptic integrals in the standard.
// For now use Cephes library, used by e.g. Scipy
double ellpk(double x); // Complete elliptic integral of the first kind
double ellpe(double x); // Complete elliptic integral of the second kind
/// Calculate poloidal flux at (R,Z) due to a unit current
/// at (Rc,Zc) using Greens function
/// This code was adapted from FreeGS
double coil_greens(double Rc, double Zc, double R, double Z) {
// Calculate k^2
double k2 = 4.*R * Rc / ( SQ(R + Rc) + SQ(Z - Zc) );
// Clip to between 0 and 1 to avoid nans e.g. when coil is on grid point
if (k2 < 1e-10)
k2 = 1e-10;
if (k2 > 1.0 - 1e-10)
k2 = 1.0 - 1e-10;
double k = sqrt(k2);
// Note definition of ellpk, ellpe is K(k^2), E(k^2)
return 2e-7 * sqrt(R*Rc) * ( (2. - k2)*ellpk(k2) - 2.*ellpe(k2) ) / k;
}
class CoilGenerator : public FieldGenerator {
public:
CoilGenerator() = default;
CoilGenerator(BoutReal Rc, BoutReal Zc, FieldGeneratorPtr R, FieldGeneratorPtr Z)
: Rc(Rc), Zc(Zc), Rgen(R), Zgen(Z) {}
BoutReal generate(BoutReal x, BoutReal y, BoutReal z, BoutReal t) override {
// Calculate R,Z location of this (x,y,z) point
BoutReal R = Rgen->generate(x,y,z,t);
BoutReal Z = Zgen->generate(x,y,z,t);
return coil_greens(Rc, Zc, R, Z);
}
FieldGeneratorPtr clone(const std::list<FieldGeneratorPtr> args) override {
if (args.size() != 4) {
throw BoutException("coil_greens expects 4 arguments (Rc, Zc, R, Z)");
}
auto argsit = args.begin();
// Coil positions are constants
BoutReal Rc_new = (*argsit++)->generate(0,0,0,0);
BoutReal Zc_new = (*argsit++)->generate(0,0,0,0);
// Evaluation location can be a function of x,y,z,t
FieldGeneratorPtr Rgen_new = *argsit++;
FieldGeneratorPtr Zgen_new = *argsit;
return std::make_shared<CoilGenerator>(Rc_new, Zc_new, Rgen_new, Zgen_new);
}
private:
BoutReal Rc, Zc; // Coil location, fixed
FieldGeneratorPtr Rgen, Zgen; // Location, function of x,y,z,t
};
///////////////////////////////////////////////////////
class MergingFlux : public PhysicsModel {
protected:
int init(bool restarting) {
// Add a function which can be used in input expressions
// This calculates the Greens function for a coil
FieldFactory::get()->addGenerator("coil_greens", std::make_shared<CoilGenerator>());
// Get the magnetic field
Coordinates *coord = mesh->getCoordinates();
B0 = coord->Bxy;
R = sqrt(coord->g_22);
// Read options
Options& opt = Options::root()["model"];
resistivity = opt["resistivity"].withDefault(0.0);
viscosity = opt["viscosity"].withDefault(0.0);
density = opt["density"].withDefault(5e18);
Te = opt["Te"].doc("Reference temperature [eV]").withDefault(10.);
AA = opt["AA"].doc("Atomic mass number").withDefault(2.0);
Bv = opt["Bv"].doc("External vertical field [T]").withDefault(0.0);
// External flux Psiext and toroidal electric field Eext can vary in time
// so a generator is needed which can be evaluated at each step
FieldFactory* factory = FieldFactory::get();
Psiext_gen = factory->parse(
opt["Psiext"].doc("External magnetic flux [Wb]").withDefault("0.0"),
&opt);
Psiext = factory->create3D(Psiext_gen);
Eext_gen = factory->parse(opt["Eext"]
.doc("External toroidal electric field [V/m]")
.withDefault("0.0"),
&opt);
Eext = factory->create3D(Eext_gen);
SAVE_REPEAT(Psiext, Eext);
BoutReal mass_density = density * AA*SI::Mp; // kg/m^3
// Calculate normalisations
// Note: A reference magnetic field of 1T and length of 1m is used
tau_A = sqrt(SI::mu0 * mass_density); // timescale [s]
SAVE_ONCE2(tau_A, density); // Save to output
SAVE_ONCE2(resistivity, viscosity);
output.write("\tDensity = %e m^-3, tau_A = %e seconds\n", density, tau_A);
// Collisional calculation
BoutReal Coulomb = 6.6 - 0.5*log(density/1e20) + 1.5*log(Te); // Coulomb logarithm
output.write("\tCoulomb logarithm = %e\n", Coulomb);
// Electron collision time [seconds]
BoutReal tau_e = 1. / (2.91e-6 * (density / 1e6) * Coulomb * pow(Te, -3./2));
// ion-ion collision time [seconds]
BoutReal tau_i = sqrt(AA) / (4.80e-8 * (density / 1e6) * Coulomb * pow(Te, -3./2));
output.write("\tCollision times [sec]: tau_e = %e, tau_i = %e\n", tau_e, tau_i);
// Parallel conductivity
BoutReal sigma_par = 1.96*density*SQ(SI::qe)*tau_e/SI::Me;
output.write("\tBraginskii resistivity: %e [Ohm m]\n", 1./sigma_par);
output.write("\tNormalised Braginskii: %e\n", tau_A/(SI::mu0*sigma_par));
output.write("\tUsing resistivity: %e\n", resistivity);
// Perpendicular viscosity
BoutReal Bmag = max(B0, true); // max over domain
BoutReal Omega_i = SI::qe*Bmag/(AA*SI::Mp);
BoutReal eta_perp = 0.3 * density*SI::qe*Te/ ( SQ(Omega_i)*tau_i );
// Perpendicular gyro-viscosity
BoutReal eta_gyro = 0.5*density*SI::qe*Te/Omega_i;
output.write("\tViscosity: %e [Pa s], Gyro-viscosity: %e [Pa s]\n", eta_perp, eta_gyro);
output.write("\tKinematic viscosity: %e [m^2/s], Gyro-viscosity: %e [m^2/s]\n", eta_perp/mass_density, eta_gyro/mass_density);
output.write("\tNormalised kin. viscosity: %e, gyro: %e\n", tau_A*eta_perp/mass_density, tau_A*eta_gyro/mass_density);
output.write("\tUsing viscosity: %e\n", viscosity);
// Solve for electromagnetic potential and vorticity
SOLVE_FOR2(Apar, omega);
// Read parallel current density
mesh->get(Jpar, "Jpar");
// Create Laplacian inversion objects for potentials
phiSolver = Laplacian::create(Options::getRoot()->getSection("phisolver"));
psiSolver = Laplacian::create(Options::getRoot()->getSection("psisolver"));
if(!restarting) {
// Invert Jpar to get vector potential
Apar = -psiSolver->solve(Jpar);
}
phi = 0.0; // Initial value
// Additional outputs
SAVE_REPEAT3(phi, Jpar, psi);
return 0;
}
int rhs(BoutReal time) {
mesh->communicate(Apar, omega);
// Apply Dirichlet boundary conditions in z
for(int i=0;i<mesh->LocalNx;i++) {
for(int j=0;j<mesh->LocalNy;j++) {
Apar(i,j,0) = -Apar(i,j,1);
Apar(i,j,mesh->LocalNz-1) = -Apar(i,j,mesh->LocalNz-2);
omega(i,j,0) = -omega(i,j,1);
omega(i,j,mesh->LocalNz-1) = -omega(i,j,mesh->LocalNz-2);
}
}
// Get J from Psi
Jpar = -Delp2(Apar);
// Get phi from vorticity
phi = phiSolver->solve(omega*SQ(B0));
mesh->communicate(Jpar, phi);
Jpar.applyBoundary("neumann");
for(int i=0;i<mesh->LocalNx;i++) {
for(int j=0;j<mesh->LocalNy;j++) {
Jpar(i,j,0) = Jpar(i,j,1);
Jpar(i,j,mesh->LocalNz-1) = Jpar(i,j,mesh->LocalNz-2);
}
}
// Evaluate external poloidal flux Psiext and toroidal electric field Eext
// Note that the normalisation (B=1T, L=1T) means that the input Psiext
// is in Webers (SI units). Because time is normalised to tau_A,
// the input electric field Eext is multiplied by tau_A to get normalised units.
//
// To keep the input in SI units, time "t" is given in seconds
FieldFactory* factory = FieldFactory::get();
Psiext = factory->create3D(Psiext_gen, bout::globals::mesh, CELL_CENTRE, time * tau_A);
Eext = tau_A * factory->create3D(Eext_gen, bout::globals::mesh, CELL_CENTRE, time * tau_A);
// Poloidal flux, including external field
psi = Apar * R + 0.5*Bv*SQ(R) + Psiext;
// Vorticity
ddt(omega) =
- bracket(psi, Jpar, BRACKET_ARAKAWA)/R // b dot Grad(Jpar)
- bracket(phi, omega, BRACKET_ARAKAWA) // ExB advection
+ viscosity*Delp2(omega) // Viscosity
;
// Vector potential
ddt(Apar) =
bracket(psi, phi, BRACKET_ARAKAWA)/R // b dot Grad(phi)
- resistivity * Jpar // Resistivity
+ Eext // External electric field. Since Eext = -dAext/dt, the plasma Apar cancels Psiext
;
return 0;
}
private:
// Evolving variables
Field3D Apar, omega; // Electromagnetic potential, vorticity
Field3D Jpar; // Parallel current density
Field3D phi; // Electrostatic potential
Field3D psi; // Poloidal flux
Field2D B0; // Magnetic field [T]
Laplacian *phiSolver; // Solver for potential phi from vorticity
Laplacian *psiSolver; // Solver for psi from current Jpar
BoutReal resistivity;
BoutReal viscosity;
BoutReal tau_A; // Normalisation timescale [s]
BoutReal density; // Normalisation density [m^-3]
BoutReal Te; // Temperature for collisions calculation [eV]
BoutReal AA; // Atomic mass number
Field2D R; // Major radius
BoutReal Bv; // Vertical magnetic field
Field3D Psiext; // External magnetic flux
Field3D Eext; // External toroidal electric field
// Generators for time-varying external flux and electric field
FieldGeneratorPtr Psiext_gen; // Generates Psiext
FieldGeneratorPtr Eext_gen; // Generates Eext;
};
BOUTMAIN(MergingFlux);