-
Notifications
You must be signed in to change notification settings - Fork 438
/
Copy pathMedSAM_Inference.py
154 lines (134 loc) · 4.42 KB
/
MedSAM_Inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# -*- coding: utf-8 -*-
"""
usage example:
python MedSAM_Inference.py -i assets/img_demo.png -o ./ --box "[95,255,190,350]"
"""
# %% load environment
import numpy as np
import matplotlib.pyplot as plt
import os
join = os.path.join
import torch
from segment_anything import sam_model_registry
from skimage import io, transform
import torch.nn.functional as F
import argparse
# visualization functions
# source: https://github.com/facebookresearch/segment-anything/blob/main/notebooks/predictor_example.ipynb
# change color to avoid red and green
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251 / 255, 252 / 255, 30 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2)
)
@torch.no_grad()
def medsam_inference(medsam_model, img_embed, box_1024, H, W):
box_torch = torch.as_tensor(box_1024, dtype=torch.float, device=img_embed.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = medsam_model.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_logits, _ = medsam_model.mask_decoder(
image_embeddings=img_embed, # (B, 256, 64, 64)
image_pe=medsam_model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
low_res_pred = torch.sigmoid(low_res_logits) # (1, 1, 256, 256)
low_res_pred = F.interpolate(
low_res_pred,
size=(H, W),
mode="bilinear",
align_corners=False,
) # (1, 1, gt.shape)
low_res_pred = low_res_pred.squeeze().cpu().numpy() # (256, 256)
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
return medsam_seg
# %% load model and image
parser = argparse.ArgumentParser(
description="run inference on testing set based on MedSAM"
)
parser.add_argument(
"-i",
"--data_path",
type=str,
default="assets/img_demo.png",
help="path to the data folder",
)
parser.add_argument(
"-o",
"--seg_path",
type=str,
default="assets/",
help="path to the segmentation folder",
)
parser.add_argument(
"--box",
type=str,
default='[95, 255, 190, 350]',
help="bounding box of the segmentation target",
)
parser.add_argument("--device", type=str, default="cuda:0", help="device")
parser.add_argument(
"-chk",
"--checkpoint",
type=str,
default="work_dir/MedSAM/medsam_vit_b.pth",
help="path to the trained model",
)
args = parser.parse_args()
device = args.device
medsam_model = sam_model_registry["vit_b"](checkpoint=args.checkpoint)
medsam_model = medsam_model.to(device)
medsam_model.eval()
img_np = io.imread(args.data_path)
if len(img_np.shape) == 2:
img_3c = np.repeat(img_np[:, :, None], 3, axis=-1)
else:
img_3c = img_np
H, W, _ = img_3c.shape
# %% image preprocessing
img_1024 = transform.resize(
img_3c, (1024, 1024), order=3, preserve_range=True, anti_aliasing=True
).astype(np.uint8)
img_1024 = (img_1024 - img_1024.min()) / np.clip(
img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None
) # normalize to [0, 1], (H, W, 3)
# convert the shape to (3, H, W)
img_1024_tensor = (
torch.tensor(img_1024).float().permute(2, 0, 1).unsqueeze(0).to(device)
)
box_np = np.array([[int(x) for x in args.box[1:-1].split(',')]])
# transfer box_np t0 1024x1024 scale
box_1024 = box_np / np.array([W, H, W, H]) * 1024
with torch.no_grad():
image_embedding = medsam_model.image_encoder(img_1024_tensor) # (1, 256, 64, 64)
medsam_seg = medsam_inference(medsam_model, image_embedding, box_1024, H, W)
io.imsave(
join(args.seg_path, "seg_" + os.path.basename(args.data_path)),
medsam_seg,
check_contrast=False,
)
# %% visualize results
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(img_3c)
show_box(box_np[0], ax[0])
ax[0].set_title("Input Image and Bounding Box")
ax[1].imshow(img_3c)
show_mask(medsam_seg, ax[1])
show_box(box_np[0], ax[1])
ax[1].set_title("MedSAM Segmentation")
plt.show()