-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_metrics.py
189 lines (153 loc) · 6.65 KB
/
run_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from pathlib import Path
import os
import zipfile
import json
from addict import Dict
from train_generator import get_data
from loading import load_gen
import numpy as np
from collections import OrderedDict
from tqdm import tqdm
def get_univariate_results(model, num_tests=100, verbose=False, n=None):
all_runs = list()
t_ks_pvals = list()
y_ks_pvals = list()
y_es_pvals = list()
t_es_pvals = list()
for _ in tqdm(range(num_tests)):
uni_metrics = model.get_univariate_quant_metrics(
dataset="test", verbose=verbose, n=n
)
all_runs.append(uni_metrics)
t_ks_pvals.append(uni_metrics["t_ks_pval"])
y_ks_pvals.append(uni_metrics["y_ks_pval"])
y_es_pvals.append(uni_metrics["y_es_pval"])
t_es_pvals.append(uni_metrics["t_es_pval"])
summary = OrderedDict()
summary.update(avg_t_ks_pval=sum(t_ks_pvals) / num_tests)
summary.update(avg_y_ks_pval=sum(y_ks_pvals) / num_tests)
summary.update(avg_t_es_pval=sum(t_es_pvals) / num_tests)
summary.update(avg_y_es_pval=sum(y_es_pvals) / num_tests)
return summary
def get_multivariate_results(model, include_w, num_tests=100, n=1000):
# wasserstein1 pval', 'wasserstein2 pval', 'Friedman-Rafsky pval', 'kNN pval', 'Energy pval'
w1_pval = list()
w2_pval = list()
fr_pval = list()
knn_pval = list()
energy_pval = list()
for _ in tqdm(range(num_tests)):
multi_metrics = model.get_multivariate_quant_metrics(
dataset="test", n=n, include_w=include_w
)
w1_pval.append(multi_metrics["wasserstein1 pval"])
w2_pval.append(multi_metrics["wasserstein2 pval"])
fr_pval.append(multi_metrics["Friedman-Rafsky pval"])
knn_pval.append(multi_metrics["kNN pval"])
energy_pval.append(multi_metrics["Energy pval"])
summary = OrderedDict()
summary.update(avg_w1_pval=sum(w1_pval) / num_tests)
summary.update(avg_w2_pval=sum(w2_pval) / num_tests)
summary.update(avg_fr_pval=sum(fr_pval) / num_tests)
summary.update(avg_knn_pval=sum(knn_pval) / num_tests)
summary.update(avg_energy_pval=sum(energy_pval) / num_tests)
return summary
def evaluate_directory(
checkpoint_dir="./GenModelCkpts",
# checkpoint_dir="./LinearModelCkpts",
data_filter=None,
num_tests=100,
n_uni=None,
n_multi=1000,
include_w=True,
results_dir="./results",
):
checkpoint_dir = Path(checkpoint_dir).resolve()
results_dir = Path(results_dir)
results_dir.mkdir(exist_ok=True, parents=True)
dataset_roots = [Path(i) for i in os.listdir(checkpoint_dir)]
results = {}
# For each overall dataset (LBIDD, lalonde, etc.)
for root in dataset_roots:
subdatasets = os.listdir(checkpoint_dir / root)
if data_filter is not None:
if data_filter not in str(root):
continue
if "1k" in str(root):
continue
# For each subdataset (psid1, cps1, etc.)
for subdata in subdatasets:
subdata_path = checkpoint_dir / root / subdata
# Check if unzipping is necessary
if (
len(os.listdir(subdata_path)) == 1
and ".zip" in os.listdir(subdata_path)[0]
):
zip_name = os.listdir(subdata_path)[0]
zip_path = subdata_path / zip_name
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(subdata_path)
subfolders = [f.path for f in os.scandir(subdata_path) if f.is_dir()]
assert len(subfolders) == 1
model_folder = subdata_path / Path(subfolders[0])
with open(model_folder / "args.txt") as f:
args = Dict(json.load(f))
args.saveroot = model_folder
args.dataroot = "./datasets/"
args.comet = False
ites, ate, w, t, y = get_data(args)
# Now load model
model, args = load_gen(saveroot=str(args.saveroot), dataroot="./datasets")
# TODO: compare the pipeline of noisy_ate() to ite() too see what's different
if ate is not None:
t0 = np.zeros((t.shape[0], 1))
t1 = np.ones((t.shape[0], 1))
print("computing ate...", end="\r", flush=True)
noisy_ate = model.noisy_ate(w=w, t1=t1, t0=t0, transform_w=True)
else:
noisy_ate = None
if ites is not None:
print("computing ite estimate...", end="\r", flush=True)
ite_est = model.ite(w=w, noisy=True)
pehe = np.sqrt(np.median(np.square(ites - ite_est)))
else:
ite_est = None
pehe = None
print("computing uni metrics...", end="\r", flush=True)
uni_summary = get_univariate_results(model, num_tests=num_tests, n=n_uni)
print("computing multi metrics include_w=True...", end="\r", flush=True)
multi_summary_w = get_multivariate_results(
model, num_tests=num_tests, n=n_multi, include_w=True
)
print("computing multi metrics include_w=False...", end="\r", flush=True)
multi_summary_no_w = get_multivariate_results(
model, num_tests=num_tests, n=n_multi, include_w=False
)
if args.test_size is None:
total = args.train_prop + args.val_prop + args.test_prop
n_total = y.shape[0]
n_train = round(n_total * args.train_prop / total)
n_val = round(n_total * args.val_prop / total)
n_test = n_total - n_train - n_val
else:
n_test = args.test_size
subdict = {}
subdict["univariate_test_size"] = n_uni if n_uni is not None else n_test
subdict["multivariate_test_size"] = n_multi
subdict["pehe"] = pehe
subdict["ate"] = ate
subdict["ate_est"] = noisy_ate
subdict["univariate_metrics"] = uni_summary
subdict["multivariate_metrics_w"] = multi_summary_w
subdict["multivariate_metrics_no_w"] = multi_summary_no_w
results[str(root) + "_" + str(subdata)] = subdict
if data_filter is not None:
with open(
results_dir / (data_filter + "_results.json"), "w"
) as fp:
json.dump(results, fp, indent=4)
else:
with open(results_dir / "results.json", "w") as fp:
json.dump(results, fp, indent=4)
if __name__ == "__main__":
evaluate_directory(data_filter='lalonde', num_tests=1, n_uni=None, n_multi=200)