Detection of schizophrenia based on tractographic techniques with fine tuning in machine learning.
Title | repo | tags | date |
---|---|---|---|
Pitch Project | Open In Google | Neuroimages | 2023-05-24 |
Dataset | Open In Google | UCLA | 2023-05-24 |
- data: Raw data for the project and images.
- docs: Documentation, including Markdown.
- results: Results, including checkpoints, hdf5 files, pickle files, as well as figures and tables.
- scripts: Scripts (Python, bash, .ipynb notebooks).
- src: Reusable Python modules for the project (imports).
- tests: Tests for the code.
Is it possible to combine tractography analysis, fMRI and Machine Learning to create an artificial intelligence model in order to enhance schizophrenia prediction?
Schizophrenia theories: Theory of Disconnection Syndrome
- The theory of disconnection syndrome is a theory that explains the symptoms of schizophrenia as the result of disruptions in the normal integration of emotion, perception, and thought.
Previous works and literature: Use of only one method of analyses, Require additional validation afterwards
- Schizophrenia prediction using tractography and machine learning
- Schizophrenia prediction using fMRI and machine learning
MRI: Now it’s only use for differential diagnosis and not for prediction
- Preprocessing, processing and tractography and fMRI using software DSI Studio and SPM
- Creating and training AI model
- Statistical analyses
In Spanish:
- Diseñar un modelo de aprendizaje automático que detecte anomalías y mecanismos subyacentes a traves de la conectómica de la corteza prefrontal, luego clasifique en categorías, y finalmente prediga el diagnóstico de la enfermedad de esquizofrenia.
Específicamente se propone:
- Utilizar técnicas de tractografía en resonancias magnéticas estructurales y por tensor de difusión para capturar la conectividad estructural y transformar en dataset para aprendizaje automatico.
- Evaluar las conexiones existentes del PFC:
- Fascículo arqueado
- Parietal frontal del cíngulo
- SLF
- Fascículo uncinado
- Red de modo predeterminado
- Crear un script que separa los datos en entrenamiento y prueba, y que se pueda modificar el tamaño de la muestra.
- Comparar modelos generales de clasificación para determinar el mejor modelo.
- Comparar El conectoma de sujeto sano (grupo 1) con sujetos con diagnóstico de esquizofrenia (grupo 2)
An English:
- Design a machine learning model that detects abnormalities and underlying mechanisms through connectomics of the prefrontal cortex, then classifies them into categories, and finally predicts the diagnosis of schizophrenia illness.
Specifically:
- Use tractography techniques in structural and diffusion tensor MRI to capture structural connectivity, also, and transform into dataset for machine learning.
- Evaluate he existing connections of the PFC:
- Arcuate Fasciculus
- Cingulum Frontal Parietal
- SLF
- Uncinate Fasciculus
- Default mode network
- Create a script that separates the data in training and test, and that can modify the size of the sample.
- Compare general classification models to determine the best model.
- Compare The connectome of healthy subject (group 1) with subjects with a diagnosis of schizophrenia (group 2)
- A Github repository with codes and scripts to reproduce training and testing.
- A jupyter notebook of the analysis codes and visualisations for comparing the results.
- Documentation
H.Galván | A.Boveda | P.Koss | S.Galván |
---|---|---|---|