diff --git a/brainpy/_src/math/ndarray.py b/brainpy/_src/math/ndarray.py index 084ba8025..04d8b8572 100644 --- a/brainpy/_src/math/ndarray.py +++ b/brainpy/_src/math/ndarray.py @@ -1655,12 +1655,11 @@ def update(self, value): def _jaxarray_unflatten(aux_data, flat_contents): r = Array(*flat_contents) - r._transform_context = aux_data[0] return r register_pytree_node(Array, - lambda t: ((t.value,), (t._transform_context,)), + lambda t: ((t.value,), None), _jaxarray_unflatten) register_pytree_node(Variable, diff --git a/brainpy/_src/tools/package.py b/brainpy/_src/tools/package.py index dff4117bd..83b5871fa 100644 --- a/brainpy/_src/tools/package.py +++ b/brainpy/_src/tools/package.py @@ -23,6 +23,8 @@ 'SUPPORT_NUMBA', ] +_minimal_brainpylib_version = '0.1.7' + def import_numba(): if numba is None: @@ -35,6 +37,8 @@ def import_brainpylib(): if brainpylib is None: raise ModuleNotFoundError('brainpylib is needed. Please install brainpylib through:\n' '> pip install brainpylib\n\n') + if brainpylib.__version__ < _minimal_brainpylib_version: + raise SystemError(f'This version of brainpy needs brainpylib >= {_minimal_brainpylib_version}.') return brainpylib diff --git a/changes.md b/changes.md index 891057cd2..40978ee08 100644 --- a/changes.md +++ b/changes.md @@ -1,155 +1,19 @@ # Change from Version 2.3.4 to Version 2.3.5 -This release (under the branch of ``brainpy=2.3.x``) continues to add supports for brain-inspired computation. +This release continues to add supports for improving the usability of BrainPy. ## New Features -### 1. ``brainpy.share`` for sharing data across submodules +1. New data structures for object-oriented transformations. + - ``NodeList`` and ``NodeDict`` for a list/tuple/dict of ``BrainPyObject`` instances. + - ``ListVar`` and ``DictVar`` for a list/tuple/dict of brainpy data. +2. `Clip` transformation for brainpy initializers. +3. All ``brainpylib`` operators are accessible in ``brainpy.math`` module. +4. Enable monitoring GPU models on CPU when setting ``DSRunner(..., memory_efficient=True)``. This setting can usually reduce so much memory usage. +5. ``brainpylib`` wheels on the linux platform support the GPU operators. Users can install gpu version of ``brainpylib`` (require ``brainpylib>=0.1.7``) directly by ``pip install brainpylib``. -In this release, we abstract the shared data as a ``brainpy.share`` object. -This object together with ``brainpy.Delay`` we will introduce below -constitute the support that enable to define SNN models like ANN ones. - - -### 2. ``brainpy.Delay`` for delay processing - -``Delay`` is abstracted as a dynamical system, which can be updated / retrieved by users. - -```python -import brainpy as bp - -class EINet(bp.DynamicalSystemNS): - def __init__(self, scale=1.0, e_input=20., i_input=20., delay=None): - super().__init__() - - self.bg_exc = e_input - self.bg_inh = i_input - - # network size - num_exc = int(3200 * scale) - num_inh = int(800 * scale) - - # neurons - pars = dict(V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., - V_initializer=bp.init.Normal(-55., 2.), input_var=False) - self.E = bp.neurons.LIF(num_exc, **pars) - self.I = bp.neurons.LIF(num_inh, **pars) - - # synapses - we = 0.6 / scale # excitatory synaptic weight (voltage) - wi = 6.7 / scale # inhibitory synaptic weight - self.E2E = bp.experimental.Exponential( - bp.conn.FixedProb(0.02, pre=self.E.size, post=self.E.size), - g_max=we, tau=5., out=bp.experimental.COBA(E=0.) - ) - self.E2I = bp.experimental.Exponential( - bp.conn.FixedProb(0.02, pre=self.E.size, post=self.I.size, ), - g_max=we, tau=5., out=bp.experimental.COBA(E=0.) - ) - self.I2E = bp.experimental.Exponential( - bp.conn.FixedProb(0.02, pre=self.I.size, post=self.E.size), - g_max=wi, tau=10., out=bp.experimental.COBA(E=-80.) - ) - self.I2I = bp.experimental.Exponential( - bp.conn.FixedProb(0.02, pre=self.I.size, post=self.I.size), - g_max=wi, tau=10., out=bp.experimental.COBA(E=-80.) - ) - self.delayE = bp.Delay(self.E.spike, entries={'E': delay}) - self.delayI = bp.Delay(self.I.spike, entries={'I': delay}) - - def update(self): - e_spike = self.delayE.at('E') - i_spike = self.delayI.at('I') - e_inp = self.E2E(e_spike, self.E.V) + self.I2E(i_spike, self.E.V) + self.bg_exc - i_inp = self.I2I(i_spike, self.I.V) + self.E2I(e_spike, self.I.V) + self.bg_inh - self.delayE(self.E(e_inp)) - self.delayI(self.I(i_inp)) - -``` - - - -### 3. ``brainpy.checkpoints.save_pytree`` and ``brainpy.checkpoints.load_pytree`` for saving/loading target from the filename - -Now we can directly use ``brainpy.checkpoints.save_pytree`` to save a -network state into the filepath we specified. - -Similarly, we can use ``brainpy.checkpoints.load_pytree`` to load -states from the given file path. - - -### 4. More ANN layers - - -- brainpy.layers.ConvTranspose1d -- brainpy.layers.ConvTranspose2d -- brainpy.layers.ConvTranspose3d -- brainpy.layers.Conv1dLSTMCell -- brainpy.layers.Conv2dLSTMCell -- brainpy.layers.Conv3dLSTMCell - - -### 5. More compatible dense operators - -PyTorch operators: - -- brainpy.math.Tensor -- brainpy.math.flatten -- brainpy.math.cat -- brainpy.math.abs -- brainpy.math.absolute -- brainpy.math.acos -- brainpy.math.arccos -- brainpy.math.acosh -- brainpy.math.arccosh -- brainpy.math.add -- brainpy.math.addcdiv -- brainpy.math.addcmul -- brainpy.math.angle -- brainpy.math.asin -- brainpy.math.arcsin -- brainpy.math.asinh -- brainpy.math.arcsin -- brainpy.math.atan -- brainpy.math.arctan -- brainpy.math.atan2 -- brainpy.math.atanh - - -TensorFlow operators: - -- brainpy.math.concat -- brainpy.math.reduce_sum -- brainpy.math.reduce_max -- brainpy.math.reduce_min -- brainpy.math.reduce_mean -- brainpy.math.reduce_all -- brainpy.math.reduce_any -- brainpy.math.reduce_logsumexp -- brainpy.math.reduce_prod -- brainpy.math.reduce_std -- brainpy.math.reduce_variance -- brainpy.math.reduce_euclidean_norm -- brainpy.math.unsorted_segment_sqrt_n -- brainpy.math.segment_mean -- brainpy.math.unsorted_segment_sum -- brainpy.math.unsorted_segment_prod -- brainpy.math.unsorted_segment_max -- brainpy.math.unsorted_segment_min -- brainpy.math.unsorted_segment_mean -- brainpy.math.segment_sum -- brainpy.math.segment_prod -- brainpy.math.segment_max -- brainpy.math.segment_min -- brainpy.math.clip_by_value -- brainpy.math.cast - - -### Others - -- Remove the hard requirements of ``brainpylib`` and ``numba``.