-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
116 lines (89 loc) · 3.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from htmlTemplates import css, bot_template, user_template
def get_pdf_text(pdf_docs):
"""
Get the text from the pdf documents
"""
raw_text = ""
for pdf_doc in pdf_docs:
pdf_reader = PdfReader(pdf_doc)
for page in pdf_reader.pages:
raw_text += page.extract_text()
return raw_text
def get_vectorstore(text_chunks):
"""
Create the vectorstore
"""
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(text_chunks, embeddings)
return vectorstore
def get_text_chunks(raw_text):
"""
Get the text chunks from the raw text
"""
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
text_chunks = text_splitter.split_text(raw_text)
return text_chunks
def get_conversation_chain(vectorstore):
"""
Create the conversation chain
"""
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chat = ChatOpenAI(temperature=0)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm = chat,
retriever = vectorstore.as_retriever(),
memory = memory
)
return conversation_chain
return chain
def handle_user_input(user_question):
"""
Handle the user input
"""
if st.session_state.conversation:
response = st.session_state.conversation({'question':user_question})
st.session_state.chat_history = response['chat_history']
for i,message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
st.set_page_config(page_title="Chat with multiple PDFs in memory", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
st.header("Chat with multiple PDFs in memory :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
pdfs_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing your documents..."):
# get pdf text
raw_text = get_pdf_text(pdfs_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create the vectorstore
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()