-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththermometry.py
112 lines (80 loc) · 2.51 KB
/
thermometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import LS370
import time
import threading
#import numpy
#import scipy
import matplotlib
#matplotlib.use('GTKAgg')
#import matplotlib.pyplot as plt
from pylab import *
lakeshore = LS370.LS370('dev12')
active_channels = ([[1,array([]),1,'1K pot'],[2,array([]),3, 'Still'],
[3,array([]),5, 'ICP'], [4,array([]),7, 'MC'],
[5,array([]),2, 'Mats'],[9,array([]),4, 'Cold Plate']])
#lakeshore.auto_scan()
out_file = open ('testfile2.txt', 'a')
t_start = time.time()
TIME_STEP = 10
running = True
ion()
fig = figure()
fig.canvas.set_window_title("LS370 Monitor")
ax = fig.add_subplot (421)
ax = fig.add_subplot (422)
ax = fig.add_subplot (423)
ax = fig.add_subplot (424)
ax = fig.add_subplot (425)
ax = fig.add_subplot (426)
def auto_scale_y(data):
span = max(data.max() - data.min(), 0.1 * data.min())
return (data.min() - span *0.05), (data.max() + span*0.05)
def main_loop():
times = array([])
line = []
ax = []
for idx, chan in enumerate(active_channels):
dat = lakeshore.read_channel(chan[0])
ax.append(subplot(4,2, chan[2]))
tline, = ax[idx].plot(0, dat/1000, '.-')
ax[idx].tick_params(axis='x', labelsize=8)
ax[idx].tick_params(axis='y', labelsize=8)
ylabel(chan[3])
line.append(tline)
fig.canvas.draw()
while (running):
t_current= time.time() - t_start
times = append(times,t_current)
stri = "%.1f, "%(t_current)
for idx, chan in enumerate(active_channels):
lakeshore.scanner_to_channel(chan[0])
time.sleep(TIME_STEP)
dat = lakeshore.read_channel(chan[0])
chan[1] = append(chan[1],dat)
stri += "%.3f, "%dat
#ax = subplot(4,2, chan[2])
line[idx].set_data(times, chan[1]/1000.)
y1, y2 = auto_scale_y(chan[1]/1000.)
ax[idx].set_ylim(ymin = y1, ymax = y2)
#ax[idx].plot(times, chan[1]/1000., 'o')
ax[idx].set_xlim(xmin=0, xmax = t_current)
fig.canvas.draw()
if running == False:
break
stri += "0\n"
print(stri)
out_file.write(stri)
print "finished"
T = threading.Thread(target=main_loop)
T.start()
input=1
while 1 :
# get keyboard input
input = raw_input(">> ")
# Python 3 users
# input = input(">> ")
if input == 'x':
running = False
break
fig.show()
out_file.close()
lakeshore.close()