diff --git a/docs/tutorials/semantic_search/asymmetric_embedding_model.md b/docs/tutorials/semantic_search/asymmetric_embedding_model.md new file mode 100644 index 0000000000..49b46c446e --- /dev/null +++ b/docs/tutorials/semantic_search/asymmetric_embedding_model.md @@ -0,0 +1,33 @@ +# Topic + +This tutorial shows how to generate embeddings using a local asymmetric embedding model in OpenSearch implemented in a Docker container . + +Note: Replace the placeholders that start with `your_` with your own values. + +# Steps +## 1. Spin up a docker OpenSearch Cluster + + ### a. Use a docker compose file + +## 2. Prepare the model for OpenSearch + + ### a. Clone the model + ### b. Zip the contents + ### c. Calculate hash + ### d. service the zip file using a python server + + - can cancel the server now + +## 3. Register a model group +## 4. Register the model +## 5. Deploy The model +## 6. Run Inference +## Next steps + +- Create an ingest pipeline for your documents with assymetric embeddings +- Run a query using KNN with your asymmetric model + + +# References + +Wang, Liang, et al. (2024). *Multilingual E5 Text Embeddings: A Technical Report*. arXiv preprint arXiv:2402.05672. [Link](https://arxiv.org/abs/2402.05672)