forked from ReactionMechanismGenerator/RMG-Py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convertFAME.py
466 lines (402 loc) · 18.2 KB
/
convertFAME.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Convert a FAME input file to a MEASURE input file.
"""
import argparse
import logging
import numpy
import os.path
from rmgpy.molecule import Molecule
import rmgpy.constants as constants
from rmgpy.quantity import Quantity, Energy
from rmgpy.cantherm.main import CanTherm
from rmgpy.cantherm.pdep import PressureDependenceJob
from rmgpy.pdep import Network, Configuration, SingleExponentialDown
from rmgpy.species import Species, TransitionState
from rmgpy.reaction import Reaction
from rmgpy.species import LennardJones
from rmgpy.statmech import HarmonicOscillator, HinderedRotor, Conformer
from rmgpy.thermo import ThermoData
from rmgpy.kinetics import Arrhenius
################################################################################
def parseCommandLineArguments():
"""
Parse the command-line arguments being passed to MEASURE. These are
described in the module docstring.
"""
parser = argparse.ArgumentParser()
parser.add_argument('file', metavar='FILE', type=str, nargs='+',
help='a file to convert')
parser.add_argument('-d', '--dictionary', metavar='DICTFILE', type=str, nargs=1,
help='the RMG dictionary corresponding to these files')
parser.add_argument('-x', '--max-energy', metavar='VALUE UNITS', type=str, nargs=2,
help='A maximum energy to crop at')
return parser.parse_args()
################################################################################
def loadFAMEInput(path, moleculeDict=None):
"""
Load the contents of a FAME input file into the MEASURE object. FAME
is an early version of MEASURE written in Fortran and used by RMG-Java.
This script enables importing FAME input files into MEASURE so we can
use the additional functionality that MEASURE provides. Note that it
is mostly designed to load the FAME input files generated automatically
by RMG-Java, and may not load hand-crafted FAME input files. If you
specify a `moleculeDict`, then this script will use it to associate
the species with their structures.
"""
def readMeaningfulLine(f):
line = f.readline()
while line != '':
line = line.strip()
if len(line) > 0 and line[0] != '#':
return line
else:
line = f.readline()
return ''
moleculeDict = moleculeDict or {}
logging.info('Loading file "{0}"...'.format(path))
f = open(path)
job = PressureDependenceJob(network=None)
# Read method
method = readMeaningfulLine(f).lower()
if method == 'modifiedstrongcollision':
job.method = 'modified strong collision'
elif method == 'reservoirstate':
job.method = 'reservoir state'
# Read temperatures
Tcount, Tunits, Tmin, Tmax = readMeaningfulLine(f).split()
job.Tmin = Quantity(float(Tmin), Tunits)
job.Tmax = Quantity(float(Tmax), Tunits)
job.Tcount = int(Tcount)
Tlist = []
for i in range(int(Tcount)):
Tlist.append(float(readMeaningfulLine(f)))
job.Tlist = Quantity(Tlist, Tunits)
# Read pressures
Pcount, Punits, Pmin, Pmax = readMeaningfulLine(f).split()
job.Pmin = Quantity(float(Pmin), Punits)
job.Pmax = Quantity(float(Pmax), Punits)
job.Pcount = int(Pcount)
Plist = []
for i in range(int(Pcount)):
Plist.append(float(readMeaningfulLine(f)))
job.Plist = Quantity(Plist, Punits)
# Read interpolation model
model = readMeaningfulLine(f).split()
if model[0].lower() == 'chebyshev':
job.interpolationModel = ('chebyshev', int(model[1]), int(model[2]))
elif model[0].lower() == 'pdeparrhenius':
job.interpolationModel = ('pdeparrhenius',)
# Read grain size or number of grains
job.minimumGrainCount = 0
job.maximumGrainSize = None
for i in range(2):
data = readMeaningfulLine(f).split()
if data[0].lower() == 'numgrains':
job.minimumGrainCount = int(data[1])
elif data[0].lower() == 'grainsize':
job.maximumGrainSize = (float(data[2]), data[1])
# A FAME file is almost certainly created during an RMG job, so use RMG mode
job.rmgmode = True
# Create the Network
job.network = Network()
# Read collision model
data = readMeaningfulLine(f)
assert data.lower() == 'singleexpdown'
alpha0units, alpha0 = readMeaningfulLine(f).split()
T0units, T0 = readMeaningfulLine(f).split()
n = readMeaningfulLine(f)
energyTransferModel = SingleExponentialDown(
alpha0 = Quantity(float(alpha0), alpha0units),
T0 = Quantity(float(T0), T0units),
n = float(n),
)
speciesDict = {}
# Read bath gas parameters
bathGas = Species(label='bath_gas', energyTransferModel=energyTransferModel)
molWtunits, molWt = readMeaningfulLine(f).split()
if molWtunits == 'u': molWtunits = 'amu'
bathGas.molecularWeight = Quantity(float(molWt), molWtunits)
sigmaLJunits, sigmaLJ = readMeaningfulLine(f).split()
epsilonLJunits, epsilonLJ = readMeaningfulLine(f).split()
assert epsilonLJunits == 'J'
bathGas.lennardJones = LennardJones(
sigma = Quantity(float(sigmaLJ), sigmaLJunits),
epsilon = Quantity(float(epsilonLJ) / constants.kB, 'K'),
)
job.network.bathGas = {bathGas: 1.0}
# Read species data
Nspec = int(readMeaningfulLine(f))
for i in range(Nspec):
species = Species()
species.conformer = Conformer()
species.energyTransferModel = energyTransferModel
# Read species label
species.label = readMeaningfulLine(f)
speciesDict[species.label] = species
if species.label in moleculeDict:
species.molecule = [moleculeDict[species.label]]
# Read species E0
E0units, E0 = readMeaningfulLine(f).split()
species.conformer.E0 = Quantity(float(E0), E0units)
species.conformer.E0.units = 'kJ/mol'
# Read species thermo data
H298units, H298 = readMeaningfulLine(f).split()
S298units, S298 = readMeaningfulLine(f).split()
Cpcount, Cpunits = readMeaningfulLine(f).split()
Cpdata = []
for i in range(int(Cpcount)):
Cpdata.append(float(readMeaningfulLine(f)))
if S298units == 'J/mol*K': S298units = 'J/(mol*K)'
if Cpunits == 'J/mol*K': Cpunits = 'J/(mol*K)'
species.thermo = ThermoData(
H298 = Quantity(float(H298), H298units),
S298 = Quantity(float(S298), S298units),
Tdata = Quantity([300,400,500,600,800,1000,1500], "K"),
Cpdata = Quantity(Cpdata, Cpunits),
Cp0 = (Cpdata[0], Cpunits),
CpInf = (Cpdata[-1], Cpunits),
)
# Read species collision parameters
molWtunits, molWt = readMeaningfulLine(f).split()
if molWtunits == 'u': molWtunits = 'amu'
species.molecularWeight = Quantity(float(molWt), molWtunits)
sigmaLJunits, sigmaLJ = readMeaningfulLine(f).split()
epsilonLJunits, epsilonLJ = readMeaningfulLine(f).split()
assert epsilonLJunits == 'J'
species.lennardJones = LennardJones(
sigma = Quantity(float(sigmaLJ), sigmaLJunits),
epsilon = Quantity(float(epsilonLJ) / constants.kB, 'K'),
)
# Read species vibrational frequencies
freqCount, freqUnits = readMeaningfulLine(f).split()
frequencies = []
for j in range(int(freqCount)):
frequencies.append(float(readMeaningfulLine(f)))
species.conformer.modes.append(HarmonicOscillator(
frequencies = Quantity(frequencies, freqUnits),
))
# Read species external rotors
rotCount, rotUnits = readMeaningfulLine(f).split()
if int(rotCount) > 0:
raise NotImplementedError('Cannot handle external rotational modes in FAME input.')
# Read species internal rotors
freqCount, freqUnits = readMeaningfulLine(f).split()
frequencies = []
for j in range(int(freqCount)):
frequencies.append(float(readMeaningfulLine(f)))
barrCount, barrUnits = readMeaningfulLine(f).split()
barriers = []
for j in range(int(barrCount)):
barriers.append(float(readMeaningfulLine(f)))
if barrUnits == 'cm^-1':
barrUnits = 'J/mol'
barriers = [barr * constants.h * constants.c * constants.Na * 100. for barr in barriers]
elif barrUnits in ['Hz', 's^-1']:
barrUnits = 'J/mol'
barriers = [barr * constants.h * constants.Na for barr in barriers]
elif barrUnits != 'J/mol':
raise Exception('Unexpected units "{0}" for hindered rotor barrier height.'.format(barrUnits))
inertia = [V0 / 2.0 / (nu * constants.c * 100.)**2 / constants.Na for nu, V0 in zip(frequencies, barriers)]
for I, V0 in zip(inertia, barriers):
species.conformer.modes.append(HinderedRotor(
inertia = Quantity(I,"kg*m^2"),
barrier = Quantity(V0,barrUnits),
symmetry = 1,
semiclassical = False,
))
# Read overall symmetry number
species.conformer.spinMultiplicity = int(readMeaningfulLine(f))
# Read isomer, reactant channel, and product channel data
Nisom = int(readMeaningfulLine(f))
Nreac = int(readMeaningfulLine(f))
Nprod = int(readMeaningfulLine(f))
for i in range(Nisom):
data = readMeaningfulLine(f).split()
assert data[0] == '1'
job.network.isomers.append(speciesDict[data[1]])
for i in range(Nreac):
data = readMeaningfulLine(f).split()
assert data[0] == '2'
job.network.reactants.append([speciesDict[data[1]], speciesDict[data[2]]])
for i in range(Nprod):
data = readMeaningfulLine(f).split()
if data[0] == '1':
job.network.products.append([speciesDict[data[1]]])
elif data[0] == '2':
job.network.products.append([speciesDict[data[1]], speciesDict[data[2]]])
# Read path reactions
Nrxn = int(readMeaningfulLine(f))
for i in range(Nrxn):
# Read and ignore reaction equation
equation = readMeaningfulLine(f)
reaction = Reaction(transitionState=TransitionState(), reversible=True)
job.network.pathReactions.append(reaction)
reaction.transitionState.conformer = Conformer()
# Read reactant and product indices
data = readMeaningfulLine(f).split()
reac = int(data[0]) - 1
prod = int(data[1]) - 1
if reac < Nisom:
reaction.reactants = [job.network.isomers[reac]]
elif reac < Nisom+Nreac:
reaction.reactants = job.network.reactants[reac-Nisom]
else:
reaction.reactants = job.network.products[reac-Nisom-Nreac]
if prod < Nisom:
reaction.products = [job.network.isomers[prod]]
elif prod < Nisom+Nreac:
reaction.products = job.network.reactants[prod-Nisom]
else:
reaction.products = job.network.products[prod-Nisom-Nreac]
# Read reaction E0
E0units, E0 = readMeaningfulLine(f).split()
reaction.transitionState.conformer.E0 = Quantity(float(E0), E0units)
reaction.transitionState.conformer.E0.units = 'kJ/mol'
# Read high-pressure limit kinetics
data = readMeaningfulLine(f)
assert data.lower() == 'arrhenius'
Aunits, A = readMeaningfulLine(f).split()
if '/' in Aunits:
index = Aunits.find('/')
Aunits = '{0}/({1})'.format(Aunits[0:index], Aunits[index+1:])
Eaunits, Ea = readMeaningfulLine(f).split()
n = readMeaningfulLine(f)
reaction.kinetics = Arrhenius(
A = Quantity(float(A), Aunits),
Ea = Quantity(float(Ea), Eaunits),
n = Quantity(float(n)),
)
reaction.kinetics.Ea.units = 'kJ/mol'
f.close()
job.network.isomers = [Configuration(isomer) for isomer in job.network.isomers]
job.network.reactants = [Configuration(*reactants) for reactants in job.network.reactants]
job.network.products = [Configuration(*products) for products in job.network.products]
return job
def pruneNetwork(network, Emax):
"""
Prune the network by removing any configurations with ground-state energy
above `Emax` in J/mol and any reactions with transition state energy above
`Emax` from the network. All reactions involving removed configurations
are also removed. Any configurations that have zero reactions as a result
of this process are also removed.
"""
# Remove configurations with ground-state energies above the given Emax
isomersToRemove = []
for isomer in network.isomers:
if isomer.E0 > Emax:
isomersToRemove.append(isomer)
for isomer in isomersToRemove:
network.isomers.remove(isomer)
reactantsToRemove = []
for reactant in network.reactants:
if reactant.E0 > Emax:
reactantsToRemove.append(reactant)
for reactant in reactantsToRemove:
network.reactants.remove(reactant)
productsToRemove = []
for product in network.products:
if product.E0 > Emax:
productsToRemove.append(product)
for product in productsToRemove:
network.products.remove(product)
# Remove path reactions involving the removed configurations
removedConfigurations = []
removedConfigurations.extend([isomer.species for isomer in isomersToRemove])
removedConfigurations.extend([reactant.species for reactant in reactantsToRemove])
removedConfigurations .extend([product.species for product in productsToRemove])
reactionsToRemove = []
for rxn in network.pathReactions:
if rxn.reactants in removedConfigurations or rxn.products in removedConfigurations:
reactionsToRemove.append(rxn)
for rxn in reactionsToRemove:
network.pathReactions.remove(rxn)
# Remove path reactions with barrier heights above the given Emax
reactionsToRemove = []
for rxn in network.pathReactions:
if rxn.transitionState.conformer.E0.value_si > Emax:
reactionsToRemove.append(rxn)
for rxn in reactionsToRemove:
network.pathReactions.remove(rxn)
def ismatch(speciesList1, speciesList2):
if len(speciesList1) == len(speciesList2) == 1:
return (speciesList1[0] is speciesList2[0])
elif len(speciesList1) == len(speciesList2) == 2:
return ((speciesList1[0] is speciesList2[0] and speciesList1[1] is speciesList2[1]) or
(speciesList1[0] is speciesList2[1] and speciesList1[1] is speciesList2[0]))
elif len(speciesList1) == len(speciesList2) == 3:
return ((speciesList1[0] is speciesList2[0] and speciesList1[1] is speciesList2[1] and speciesList1[2] is speciesList2[2]) or
(speciesList1[0] is speciesList2[0] and speciesList1[1] is speciesList2[2] and speciesList1[2] is speciesList2[1]) or
(speciesList1[0] is speciesList2[1] and speciesList1[1] is speciesList2[0] and speciesList1[2] is speciesList2[2]) or
(speciesList1[0] is speciesList2[1] and speciesList1[1] is speciesList2[2] and speciesList1[2] is speciesList2[0]) or
(speciesList1[0] is speciesList2[2] and speciesList1[1] is speciesList2[0] and speciesList1[2] is speciesList2[1]) or
(speciesList1[0] is speciesList2[2] and speciesList1[1] is speciesList2[1] and speciesList1[2] is speciesList2[0]))
else:
return False
# Remove orphaned configurations (those with zero path reactions involving them)
isomersToRemove = []
for isomer in network.isomers:
for rxn in network.pathReactions:
if ismatch(rxn.reactants, isomer.species) or ismatch(rxn.products, isomer.species):
break
else:
isomersToRemove.append(isomer)
for isomer in isomersToRemove:
network.isomers.remove(isomer)
reactantsToRemove = []
for reactant in network.reactants:
for rxn in network.pathReactions:
if ismatch(rxn.reactants, reactant.species) or ismatch(rxn.products, reactant.species):
break
else:
reactantsToRemove.append(reactant)
for reactant in reactantsToRemove:
network.reactants.remove(reactant)
productsToRemove = []
for product in network.products:
for rxn in network.pathReactions:
if ismatch(rxn.reactants, product.species) or ismatch(rxn.products, product.species):
break
else:
productsToRemove.append(product)
for product in productsToRemove:
network.products.remove(product)
################################################################################
if __name__ == '__main__':
# Parse the command-line arguments
args = parseCommandLineArguments()
if args.max_energy:
Emax = float(args.max_energy[0])
Eunits = str(args.max_energy[1])
Emax = Energy(Emax, Eunits).value_si
else:
Emax = None
# Load RMG dictionary if specified
moleculeDict = {}
if args.dictionary is not None:
f = open(args.dictionary[0])
adjlist = ''; label = ''
for line in f:
if len(line.strip()) == 0:
if len(adjlist.strip()) > 0:
molecule = Molecule()
molecule.fromAdjacencyList(adjlist)
moleculeDict[label] = molecule
adjlist = ''; label = ''
else:
if len(adjlist.strip()) == 0:
label = line.strip()
adjlist += line
f.close()
method = None
for fstr in args.file:
# Construct CanTherm job from FAME input
job = loadFAMEInput(fstr, moleculeDict)
if Emax is not None:
pruneNetwork(job.network, Emax)
# Save MEASURE input file based on the above
dirname, basename = os.path.split(os.path.abspath(fstr))
basename, ext = os.path.splitext(basename)
path = os.path.join(dirname, basename + '.py')
job.saveInputFile(path)