-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
270 lines (218 loc) · 8.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from openai import OpenAI
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
class Step(BaseModel):
explanation: str
output: str
class Subtopics(BaseModel):
steps: List[Step]
result: List[str]
class Topics(BaseModel):
result: List[Subtopics]
class CardFront(BaseModel):
question: Optional[str] = None
class CardBack(BaseModel):
answer: Optional[str] = None
explanation: str
example: str
class Card(BaseModel):
front: CardFront
back: CardBack
class CardList(BaseModel):
topic: str
cards: List[Card]
def structured_output_completion(
client, model, response_format, system_prompt, user_prompt
):
try:
completion = client.beta.chat.completions.parse(
model=model,
messages=[
{"role": "system", "content": system_prompt.strip()},
{"role": "user", "content": user_prompt.strip()},
],
response_format=response_format,
)
except Exception as e:
print(f"An error occurred during the API call: {e}")
return None
try:
if not hasattr(completion, "choices") or not completion.choices:
print("No choices returned in the completion.")
return None
first_choice = completion.choices[0]
if not hasattr(first_choice, "message"):
print("No message found in the first choice.")
return None
if not hasattr(first_choice.message, "parsed"):
print("Parsed message not available in the first choice.")
return None
return first_choice.message.parsed
except Exception as e:
print(f"An error occurred while processing the completion: {e}")
raise gr.Error(f"Processing error: {e}")
def generate_cards(
api_key_input,
subject,
topic_number=1,
cards_per_topic=2,
preference_prompt="assume I'm a beginner",
):
"""
Generates flashcards for a given subject.
Parameters:
- subject (str): The subject to generate cards for.
- topic_number (int): Number of topics to generate.
- cards_per_topic (int): Number of cards per topic.
- preference_prompt (str): User preferences to consider.
Returns:
- List[List[str]]: A list of rows containing
[topic, question, answer, explanation, example].
"""
gr.Info("Starting process")
if not api_key_input:
return gr.Error("Error: OpenAI API key is required.")
client = OpenAI(api_key=api_key_input)
model = "gpt-4o-mini"
all_card_lists = []
system_prompt = f"""
You are an expert in {subject}, assisting the user to master the topic while
keeping in mind the user's preferences: {preference_prompt}.
"""
topic_prompt = f"""
Generate the top {topic_number} important subjects to know on {subject} in
order of ascending difficulty.
"""
try:
topics_response = structured_output_completion(
client, model, Topics, system_prompt, topic_prompt
)
if topics_response is None:
print("Failed to generate topics.")
return []
if not hasattr(topics_response, "result") or not topics_response.result:
print("Invalid topics response format.")
return []
topic_list = [
item for subtopic in topics_response.result for item in subtopic.result
][:topic_number]
except Exception as e:
raise gr.Error(f"Topic generation failed due to {e}")
for topic in topic_list:
card_prompt = f"""
You are to generate {cards_per_topic} cards on {subject}: "{topic}"
keeping in mind the user's preferences: {preference_prompt}.
Questions should cover both sample problems and concepts.
Use the explanation field to help the user understand the reason behind things
and maximize learning. Additionally, offer tips (performance, gotchas, etc.).
"""
try:
cards = structured_output_completion(
client, model, CardList, system_prompt, card_prompt
)
if cards is None:
print(f"Failed to generate cards for topic '{topic}'.")
continue
if not hasattr(cards, "topic") or not hasattr(cards, "cards"):
print(f"Invalid card response format for topic '{topic}'.")
continue
all_card_lists.append(cards)
except Exception as e:
print(f"An error occurred while generating cards for topic '{topic}': {e}")
continue
flattened_data = []
for card_list_index, card_list in enumerate(all_card_lists, start=1):
try:
topic = card_list.topic
# Get the total number of cards in this list to determine padding
total_cards = len(card_list.cards)
# Calculate the number of digits needed for padding
padding = len(str(total_cards))
for card_index, card in enumerate(card_list.cards, start=1):
# Format the index with zero-padding
index = f"{card_list_index}.{card_index:0{padding}}"
question = card.front.question
answer = card.back.answer
explanation = card.back.explanation
example = card.back.example
row = [index, topic, question, answer, explanation, example]
flattened_data.append(row)
except Exception as e:
print(f"An error occurred while processing card {index}: {e}")
continue
return flattened_data
def export_csv(d):
MIN_ROWS = 2
if len(d) < MIN_ROWS:
gr.Warning(f"The dataframe has fewer than {MIN_ROWS} rows. Nothing to export.")
return None
gr.Info("Exporting...")
d.to_csv("anki_deck.csv", index=False)
return gr.File(value="anki_deck.csv", visible=True)
with gr.Blocks(
gr.themes.Soft(), title="AnkiGen", css="footer{display:none !important}"
) as ankigen:
gr.Markdown("# 📚 AnkiGen - Anki Card Generator")
gr.Markdown("#### Generate an LLM generated Anki comptible csv based on your subject and preferences.") #noqa
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Configuration")
api_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key",
)
subject = gr.Textbox(
label="Subject",
placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
)
topic_number = gr.Slider(
label="Number of Topics", minimum=2, maximum=20, step=1, value=2
)
cards_per_topic = gr.Slider(
label="Cards per Topic", minimum=2, maximum=30, step=1, value=3
)
preference_prompt = gr.Textbox(
label="Preference Prompt",
placeholder=
"""Any preferences? For example: Learning level, e.g., "Assume I'm a beginner" or "Target an advanced audience" Content scope, e.g., "Only cover up until subqueries in SQL" or "Focus on organic chemistry basics""", #noqa
)
generate_button = gr.Button("Generate Cards")
with gr.Column(scale=2):
gr.Markdown("### Generated Cards")
gr.Markdown(
"""
Subject to change: currently exports a .csv with the following fields, you can
create a new note type with these fields to handle importing.:
<b>Index, Topic, Question, Answer, Explanation, Example</b>
"""
)
output = gr.Dataframe(
headers=[
"Index",
"Topic",
"Question",
"Answer",
"Explanation",
"Example",
],
interactive=False,
height=800,
)
export_button = gr.Button("Export to CSV")
download_link = gr.File(interactive=False, visible=False)
generate_button.click(
fn=generate_cards,
inputs=[
api_key_input,
subject,
topic_number,
cards_per_topic,
preference_prompt,
],
outputs=output,
)
export_button.click(fn=export_csv, inputs=output, outputs=download_link)
if __name__ == "__main__":
ankigen.launch(share=False, favicon_path="./favicon.ico")