forked from uw-cryo/skysat_stereo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskysat_triplet_pipeline.py
executable file
·323 lines (270 loc) · 15.3 KB
/
skysat_triplet_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#! /usr/bin/env python
import subprocess
import argparse
from datetime import datetime
import os,sys,glob,shutil
from rpcm import geo
import numpy as np
import geopandas as gpd
from distutils.spawn import find_executable
from skysat_stereo import misc_geospatial as misc
from skysat_stereo import asp_utils as asp
from skysat_stereo import bundle_adjustment_lib as ba
from skysat_stereo import skysat_stereo_workflow as workflow
"""
Script for running the full pipeline based on workflow described in ISPRS 2020 submission
Need to specify input image folder, input refrence DEM folder
"""
#TODO:
# Add an option of cleaning up the lots of intermediate files produced
def getparser():
parser = argparse.ArgumentParser(description='Wrapper script to run full triplet stereo workflow')
parser.add_argument('-in_img',default=None,type=str,help='path to Folder containing L1B imagery')
parser.add_argument('-aoi_bbox',default=None,type=str,help='path to bounding box shapefile if limiting processing to a smaller aoi')
parser.add_argument('-orthodem',default=None,type=str,help='path to Reference DEM to use in orthorectification and camera resection, if not provided, will use coregdem')
parser.add_argument('-coregdem',default=None,type=str,help='path to reference DEM to use in coregisteration')
parser.add_argument('-mask_dem',default=1,type=int,choices=[1,0],help='mask reference DEM for static surfaces before coreg (default: %(default)s)')
mask_opt = ['glaciers','glaciers+nlcd']
parser.add_argument('-mask_dem_opt',default='glaciers',choices=mask_opt,help='surfaces to mask if -mask_dem=1, default is glaciers which uses RGI polygons.\
If processing in CONUS, the option of glaciers+nlcd also additionaly masks out forest surfaces')
parser.add_argument('-ortho_workflow',default=1,type=int,choices=[1,0],help='option to orthorectify before stereo or not')
parser.add_argument('-block_matching',default=0,type=int,choices=[1,0],help='whether to use block matching in final stereo matching, default is 0 (not)')
parser.add_argument('-job_name',default=None,type=str,help='identifier for output folder and final composite products')
parser.add_argument('-outfolder',default=None,type=str,help='path to output folder to save results in')
bin_choice = [1,0]
parser.add_argument('-full_workflow',choices=bin_choice,type=int,default=1,help='Specify 1 to run full workflow (default: %(default)s)')
parser.add_argument('-partial_workflow_steps',nargs='*',help='specify steps of workflow to run')
return parser
def main():
parser = getparser()
args = parser.parse_args()
img_folder = args.in_img
coreg_dem = args.coregdem
if args.orthodem is not None:
ortho_dem = args.orthodem
else:
ortho_dem = coreg_dem
# Check for input files
img_list = glob.glob(os.path.join(img_folder,'*.tif'))+glob.glob(os.path.join(img_folder,'*.tiff'))
if len(img_list)<2:
print(f"Only {len(img_list)} images detected, exiting")
sys.exit()
if not os.path.exists(coreg_dem):
print(f"Coreg dem {coreg_dem} could not be located, exiting")
sys.exit()
if not os.path.exists(ortho_dem):
print(f"Ortho dem {ortho_dem} could not be located, exiting")
sys.exit()
# structure for output folder
out_fol = os.path.join(args.outfolder,'proc_out')
job_name = args.job_name
#Universal Args
if args.ortho_workflow == 1:
map = True
else:
map = False
if map:
init_stereo_session = 'rpcmaprpc'
init_ortho_session = 'rpc'
final_stereo_session = 'pinholemappinhole'
final_ortho_session = 'pinhole'
else:
init_stereo_session = 'rpc'
init_ortho_session = 'rpc'
final_stereo_session, final_ortho_session = ['nadirpinhole','pinhole']
# For consistency, lets hardcode expected file names,folder names here :)
# step1 outputs
overlap_full_txt = os.path.join(out_fol,'overlap.txt')
overlap_full_pkl = os.path.splitext(overlap_full_txt)[0]+'_with_overlap_perc.pkl'
overlap_stereo_pkl = os.path.splitext(overlap_full_pkl)[0]+'_stereo_only.pkl'
overlap_stereo_txt = os.path.splitext(overlap_full_pkl)[0]+'_stereo_only.txt'
bound_fn = os.path.splitext(overlap_full_txt)[0]+'_bound.gpkg'
bound_buffer_fn = os.path.splitext(bound_fn)[0]+'_1km_buffer.gpkg'
# step2 outputs
cam_gcp_directory = os.path.join(out_fol,'camgen_cam_gcp')
# step3 outputs
init_ortho_dir = os.path.join(out_fol,'init_rpc_ortho')
init_stereo_dir = os.path.join(out_fol,'init_rpc_stereo')
# step4 bundle_adjust dense matches
init_ba = os.path.join(out_fol,'ba_pinhole')
ba_prefix = os.path.join(init_ba,'run')
# step5 stereo_args
intermediate_ortho_dir = os.path.join(out_fol,'intermediate_pinhole_ortho')
final_stereo_dir = os.path.join(out_fol,'final_pinhole_stereo')
# step 6, dem gridding and mosaicing
mos_dem_dir = os.path.join(final_stereo_dir,'composite_dems')
# step 7. dem_alignment
alignment_dir = os.path.join(out_fol,'georegistered_dem_mos')
# step 8, camera alignment
aligned_cam_dir = os.path.join(out_fol,'georegistered_cameras')
# step 9, final orthorectification
final_ortho_dir = os.path.join(out_fol,'georegistered_orthomosaics')
# step 10, plot figure
final_figure = os.path.join(out_fol,f"{job_name}_result.jpg")
# step 11, experimental rpc production
if args.full_workflow == 1:
steps2run = np.arange(0,11) # run the entire 9 steps
else:
steps2run = np.array(args.partial_workflow_steps).astype(int)
#workflow_steps
# create output directory
if not os.path.exists(out_fol):
os.makedirs(out_fol)
#copy reference DEM(s) to refdem directory
# if parallel runs on different nodes use the same DEM, then will have issues
refdem_dir = os.path.join(out_fol,'refdem')
if not os.path.exists(refdem_dir):
os.makedirs(refdem_dir)
shutil.copy2(coreg_dem,os.path.join(refdem_dir,os.path.basename(coreg_dem)))
if coreg_dem != ortho_dem:
diff_dem = True
shutil.copy2(ortho_dem,os.path.join(refdem_dir,os.path.basename(ortho_dem)))
else:
diff_dem = False
# replace old variable names
coreg_dem = os.path.join(refdem_dir,os.path.basename(coreg_dem))
ortho_dem = os.path.join(refdem_dir,os.path.basename(ortho_dem))
if 1 in steps2run:
print("Computing overlapping pairs")
# Step 1 Compute overlapping pairs
# Inputs: Image directory, minimum overlap percentage
overlap_perc = 0.01 # 1 percent essentially
workflow.prepare_stereopair_list_rtree(img_folder,overlap_perc,overlap_full_txt,
aoi_bbox=args.aoi_bbox)
print("Computing Target UTM zones for orthorectification")
gdf = gpd.read_file(bound_fn)
clon,clat = [gdf.centroid.x.values,gdf.centroid.y.values]
epsg_code = f'EPSG:{geo.compute_epsg(clon,clat)}'
print(f"Detected UTM zone is {epsg_code}")
if not os.path.exists(bound_buffer_fn):
print("Creating buffered shapefile")
gdf_proj = gdf.to_crs(epsg_code)
gdf_proj['geometry'] = gdf_proj.buffer(1000)
gdf_proj.to_file(bound_buffer_fn,driver='GPKG')
print("Cropping reference DEMs to extent of SkySat footprint + 1 km buffer")
misc.clip_raster_by_shp_disk(coreg_dem,bound_buffer_fn)
misc.ndvtrim_function(os.path.splitext(coreg_dem)[0]+'_shpclip.tif')
coreg_dem = os.path.splitext(coreg_dem)[0]+'_shpclip_trim.tif'
if diff_dem:
misc.clip_raster_by_shp_disk(ortho_dem,bound_buffer_fn)
misc.ndvtrim_function(os.path.splitext(ortho_dem)[0]+'_shpclip.tif')
ortho_dem = os.path.splitext(ortho_dem)[0]+'_shpclip_trim.tif'
else:
ortho_dem = coreg_dem
if 2 in steps2run:
print("Generating Frame Cameras")
cam_gen_log = workflow.skysat_preprocess(img_folder,mode='triplet',
product_level='l1b',overlap_pkl=overlap_stereo_pkl,dem=ortho_dem,
outdir=cam_gcp_directory)
now = datetime.now()
log_fn = os.path.join(cam_gcp_directory,'camgen_{}.log'.format(now))
print("saving subprocess camgen log at {}".format(log_fn))
with open(log_fn,'w') as f:
for log in cam_gen_log:
f.write(log)
if 3 in steps2run:
# specify whether to run using maprojected sessions or not
if map:
# orthorectify all the images first
print("Orthorectifying images using RPC camera")
workflow.execute_skysat_orhtorectification(images=img_list,data='triplet',session=init_ortho_session,
outdir=init_ortho_dir,tsrs=epsg_code,dem=ortho_dem,mode='science',
overlap_list=overlap_stereo_txt,copy_rpc=1,orthomosaic=0)
init_stereo_input_img_folder = init_ortho_dir
else:
init_stereo_input_img_folder = img_folder
print("Running stereo using RPC cameras")
# Note crop_map = 0 option, this does not do warping to common extent and resolution for orthoimages before stereo, because we want to
# presrve this crucail information for correctly unwarped dense match points
workflow.execute_skysat_stereo(init_stereo_input_img_folder,init_stereo_dir,
mode='triplet',session=init_stereo_session,
dem=ortho_dem,texture='normal',writeout_only=False,
block=1,crop_map=0,threads=2,overlap_pkl=overlap_stereo_pkl,
cross_track=False)
# copy dense match file to ba directory
workflow.dense_match_wrapper(stereo_master_dir=os.path.abspath(init_stereo_dir),
ba_dir=os.path.abspath(init_ba),modify_overlap=0)
if 4 in steps2run:
# this is bundle adjustment step
# we use dense files copied from previous step
ba_prefix = os.path.join(init_ba,'run')
print("running bundle adjustment")
ba.bundle_adjust_stable(img=img_folder,ba_prefix=ba_prefix,cam=os.path.abspath(cam_gcp_directory),
session='nadirpinhole',overlap_list=overlap_stereo_txt,
num_iter=700,num_pass=2,mode='full_triplet')
if 5 in steps2run:
# this is where final stereo will take place
# first we orthorectify again, if map = True
if map:
workflow.execute_skysat_orhtorectification(images=img_list,data='triplet',session=final_ortho_session,
outdir=intermediate_ortho_dir,tsrs=epsg_code,dem=ortho_dem,
ba_prefix=ba_prefix+'-run',mode='science',overlap_list=overlap_stereo_txt,
copy_rpc=1,orthomosaic=0)
print("Running intermediate orthorectification with bundle adjusted pinhole cameras")
final_stereo_input_img_folder = intermediate_ortho_dir
else:
final_stereo_input_img_folder = img_folder
# now run stereo
print("Running final stereo reconstruction")
workflow.execute_skysat_stereo(final_stereo_input_img_folder,
final_stereo_dir,ba_prefix=ba_prefix+'-run',
mode='triplet',session=final_stereo_session,
dem=ortho_dem,texture='normal',writeout_only=False,
block=args.block_matching,crop_map=1,threads=2,overlap_pkl=overlap_stereo_pkl,
cross_track=False)
if 6 in steps2run:
pc_list = sorted(glob.glob(os.path.join(final_stereo_dir,'20*/2*/run-PC.tif')))
print(f"Identified {len(pc_list)} clouds")
# this is dem gridding followed by mosaicing
workflow.gridding_wrapper(pc_list,tr=2)
print("Mosaicing DEMs")
workflow.dem_mosaic_wrapper(dir=os.path.abspath(final_stereo_dir),mode='triplet',
out_folder=os.path.abspath(mos_dem_dir))
if 7 in steps2run:
# this is DEM alignment step
# add option to mask coreg_dem for static surfaces
# might want to remove glaciers, forest et al. before coregisteration
# this can potentially be done in asp_utils step
# actually use dem_mask.py with options of nlcd, nlcd_filter (not_forest) and of course RGI glacier polygons
if args.mask_dem == 1:
# this might change for non-US sites, best to use bareground files
if args.mask_dem_opt == 'glaciers':
mask_list = ['glaciers']
elif args.msak_dem_opt == 'glaciers+nlcd':
mask_list = ['nlcd','glaciers']
print("Masking reference DEM to static surfaces")
misc.dem_mask_disk(mask_list,os.path.abspath(coreg_dem))
coreg_dem = os.path.splitext(coreg_dem)[0]+'_ref.tif'
#now perform alignment
median_mos_dem = glob.glob(os.path.join(mos_dem_dir,'multiview_*_median_mos.tif'))[0]
print("Aligning DEMs")
workflow.alignment_wrapper_single(coreg_dem,source_dem=median_mos_dem,max_displacement=40,
outprefix=os.path.join(alignment_dir,'run'))
if 8 in steps2run:
# this steps aligns the frame camera models
camera_list = sorted(glob.glob(os.path.join(init_ba,'run-run-*.tsai')))
print(f"Detected {len(camera_list)} cameras to be registered to DEM")
alignment_vector = glob.glob(os.path.join(alignment_dir,'alignment_vector.txt'))[0]
if not os.path.exists(aligned_cam_dir):
os.makedirs(aligned_cam_dir)
print("Aligning cameras")
workflow.align_cameras_wrapper(input_camera_list=camera_list,transform_txt=alignment_vector,
outfolder=aligned_cam_dir)
if 9 in steps2run:
# this produces final georegistered orthomosaics
georegistered_median_dem = glob.glob(os.path.join(alignment_dir,'run-trans_*DEM.tif'))[0]
print("Running final orthomsaic creation")
workflow.execute_skysat_orhtorectification(images=img_list,data='triplet',session=final_ortho_session,
outdir=final_ortho_dir,tsrs=epsg_code,dem=georegistered_median_dem,
ba_prefix=os.path.join(aligned_cam_dir,'run-run'),mode='science',
overlap_list=overlap_stereo_txt,copy_rpc=0,orthomosaic=1)
if 10 in steps2run:
# this produces a final plot of orthoimage,DEM, NMAD and countmaps
ortho = glob.glob(os.path.join(final_ortho_dir,'*finest_orthomosaic.tif'))[0]
count = glob.glob(os.path.join(mos_dem_dir,'*count*.tif'))[0]
nmad = glob.glob(os.path.join(mos_dem_dir,'*nmad*.tif'))[0]
georegistered_median_dem = glob.glob(os.path.join(alignment_dir,'run-trans_*DEM.tif'))[0]
print("plotting final figure")
misc.plot_composite_fig(ortho,georegistered_median_dem,count,nmad,outfn=final_figure)
if __name__ == '__main__':
main()