-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME.Rmd
210 lines (158 loc) · 14.1 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# bsvarSIGNs <a href="https://bsvars.org/bsvarSIGNs/"><img src="man/figures/logo.png" align="right" height="139" alt="bsvarSIGNs website" /></a>
An **R** package for Bayesian Estimation of Structural Vector Autoregressions Identified by Sign, Zero, and Narrative Restrictions
*The First Prize laureate of the Di Cook Open-Source Statistical Software Award granted by the Statistical Society of Australia in 2024*
<!-- badges: start -->
[![](https://www.r-pkg.org/badges/version/bsvarSIGNs)](https://cran.r-project.org/package=bsvarSIGNs)
[![R-CMD-check](https://github.com/bsvars/bsvarSIGNs/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/bsvars/bsvarSIGNs/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->
Implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in [Giannone, Lenza, Primiceri (2015)](http://doi.org/10.1162/REST_a_00483). The sign restrictions are implemented employing the methods proposed by [Rubio-Ramírez, Waggoner & Zha (2010)](http://doi.org/10.1111/j.1467-937X.2009.00578.x), while identification through sign and zero restrictions follows the approach developed by [Arias, Rubio-Ramírez, Waggoner (2018)](http://doi.org/10.3982/ECTA14468). Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by [Antolín-Díaz & Rubio-Ramírez (2018)](http://doi.org/10.1257/aer.20161852). Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation including the vignette by [Wang & Woźniak (2024)](https://doi.org/10.48550/arXiv.2501.16711). The **bsvarSIGNs** package is aligned regarding objects, workflows, and code structure with the **R** package **bsvars** by [Woźniak (2024)](http://doi.org/10.32614/CRAN.package.bsvars), and they constitute an integrated toolset. It was granted the Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in 2024.
<a href="https://bsvars.org"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/solid/house.svg" width="40" height="40"/> </a>
<a href="mailto:[email protected]"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/solid/envelope.svg" width="40" height="40"/> </a>
<a href="https://github.com/bsvars/bsvarSIGNs"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/github.svg" width="40" height="40"/> </a>
<a href="https://fosstodon.org/@bsvars"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/mastodon.svg" width="50" height="50"/> </a>
<a href="https://bsky.app/profile/bsvars.org"> <img src="https://upload.wikimedia.org/wikipedia/commons/7/7a/Bluesky_Logo.svg" width="40" height="40"/> </a>
<a href="https://bsvars.org/"><img src="https://raw.githubusercontent.com/bsvars/hex/refs/heads/main/bsvars.org/bsvars.org.png" width="120" alt="bsvars.org website" /></a>
<a href="https://bsvars.org/bsvars/"><img src="https://raw.githubusercontent.com/bsvars/hex/refs/heads/main/bsvars/bsvars.png" width="120" alt="bsvars website" /></a>
<a href="https://bsvars.org/bsvarSIGNs/"><img src="https://raw.githubusercontent.com/bsvars/hex/refs/heads/main/bsvarSIGNs/bsvarSIGNs.png" width="120" alt="bsvarSIGNs website" /></a>
## Features
#### Structural Vector Autoregressions
- All the models in the **bsvarSIGNs** package consist of the Vector Autoregressive equation, with autoregressive parameters `A` and error terms `E`, and the structural equation with a structural matrix `B` and shocks `U`
```
Y = AX + E (VAR equation)
BE = U (structural equation)
```
- All the models feature a hierarchical Minnesota prior following the specification proposed by Giannone, Lenza, Primiceri (2015)
- The identification of the SVAR model is achieved by imposing:
- sign restrictions on the structural matrix $\mathbf{B}$,
- sign and zero restrictions on the zero-horizon impulse responses $\mathbf{\Theta}_0 = \mathbf{B}^{-1}$,
- sign restrictions on the impulse responses at other horizons $\mathbf{\Theta}_i$ for $i = 1, 2, \ldots$,
- sign restrictions on selected structural shocks $\mathbf{u}_t$,
- two types of sign restrictions on the historical decompositions.
#### Simple workflows
- Specify the models using `specify_bsvarSIGN$new()` function
- Estimate the models using the `estimate()` method
- Predict the future using the `forecast()` method
- Provide structural analyses using **impulse responses**, forecast error variance decompositions, historical decompositions, and structural shocks using functions `compute_impulse_responses()`, `compute_variance_decompositions()`, `compute_historical_decompositions()`, and `compute_structural_shocks()` respectively
- Analyse the fitted values, time-varying volatility using functions `compute_fitted_values()` and `compute_conditional_sd()` respectively
- Use `plot()` and `summary()` methods to gain the insights into the core of the empirical problem.
#### Fast and efficient computations
- Blazingly fast computations are obtained by combining
- the application of frontier econometric and numerical techniques, and
- the implementation using compiled code written in **cpp**
- It combines the best of two worlds: the ease of data analysis with **R** and fast **cpp** algorithms
- The algorithms used here are very fast. But still, Bayesian estimation might take a little time. Look at our beautiful **progress bar** in the meantime:
```
**************************************************|
bsvarSIGNs: Bayesian Structural VAR with sign, |
zero and narrative restrictions |
**************************************************|
Progress of simulation for 1000 independent draws
Press Esc to interrupt the computations
**************************************************|
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
***********************************
```
#### The hexagonal logo
This beautiful logo can be reproduced in R using [this file](https://github.com/donotdespair/naklejki/blob/master/bsvarSIGNs/bsvarSIGNs.R).
<p></p>
<a href="https://bsvars.org/bsvarSIGNs/"><img src="man/figures/logo.png" height="400" alt="bsvars website" /></a>
<p></p>
## Resources
- a vignette by [Wang & Woźniak (2025)](https://doi.org/10.48550/arXiv.2501.16711)
- a website of the family of packages [bsvars.org](https://bsvars.org/)
- **bsvarSIGNs** on [CRAN](https://cran.r-project.org/package=bsvarSIGNs)
- presentations:
- for students at [Szkoła Główna Handlowa](https://www.sgh.waw.pl/) given in Warsaw in December 2024 [featuring **bsvars** 3.2 and **bsvarSIGNs** 1.0.1](https://bsvars.org/2024-12-sgh/)]
- at [Uniwersytet Warszawski](https://www.wne.uw.edu.pl/) given in Warsaw in December 2024 [featuring **bsvars** 3.2 and **bsvarSIGNs** 1.0.1](https://bsvars.org/2024-12-uwwne/)
- for students and researchers at [Uniwersytet Ekonomiczny w Krakowie](https://uek.krakow.pl/) given in Cracow in December 2024 [featuring **bsvars** 3.2 and **bsvarSIGNs** 1.0.1](https://bsvars.org/2024-12-uek/)
- a [youtube recording](https://youtu.be/QT02OTZWW14)] for [[Forecasting for Social Good](https://www.f4sg.org/)
- for [Forecasting for Social Good](https://www.f4sg.org/) given online in December 2024 [featuring **bsvars** 3.2 and **bsvarSIGNs** 1.0.1](https://bsvars.org/2024-12-F4SG/)]
- for Bayesian Econometrics students at the University of Melbourne given in October 2024 [featuring **bsvarSIGNs** 1.0.1](https://bsvars.org/2024-10-be24-bsvarSIGNs/)
- for the [QuantEcon](https://quantecon.org/) lab at the Australian National University given in August 2024 [featuring **bsvars** 3.1 and **bsvarSIGNs** 1.0.1](https://bsvars.org/2024-08-bsvars-QuantEcon/)
- at Monash University given in August 2024 [featuring **bsvars** 3.1 and **bsvarSIGNs** 1.0](https://bsvars.org/2024-08-bsvars-monash/)
## Examples
Replication of the results by [Arias, Rubio-Ramírez, & Waggoner (2018)](http://doi.org/10.3982/ECTA14468).
```{r, eval=FALSE, echo=TRUE}
# investigate the effects of the optimism shock
data(optimism)
# specify identifying restrictions:
# + no effect on productivity (zero restriction)
# + positive effect on stock prices (positive sign restriction)
sign_irf = matrix(c(0, 1, rep(NA, 23)), 5, 5)
# specify the model
specification = specify_bsvarSIGN$new(optimism * 100,
p = 4,
sign_irf = sign_irf)
# estimate the model
posterior = estimate(specification, S = 100)
# compute and plot impulse responses
irf = compute_impulse_responses(posterior, horizon = 40)
plot(irf, probability = 0.68)
```
Replication of the results by [Antolín-Díaz and Rubio-Ramírez (2018)](http://doi.org/10.1257/aer.20161852).
```{r, eval=FALSE, echo=TRUE}
# investigate the effects of the contractionary monetary policy shock
data(monetary)
# specify identifying restrictions:
# + sign restrictions on the impulse responses at horizons from 0 to 5
sign_irf = matrix(NA, 6, 6)
sign_irf[, 1] = c(NA, -1, -1, NA, -1, 1)
sign_irf = array(sign_irf, dim = c(6, 6, 6))
# + narrative sign restriction: the shock is positive in October 1979
sign_narrative = list(
specify_narrative(start = 166, periods = 1, type = "S", sign = 1, shock = 1),
specify_narrative(start = 166, periods = 1, type = "B", sign = 1, shock = 1, var = 6)
)
# specify the model
specification = specify_bsvarSIGN$new(monetary * 100,
p = 12,
sign_irf = sign_irf,
sign_narrative = sign_narrative)
# estimate the model
posterior = estimate(specification, S = 100)
# compute and plot impulse responses
irf = compute_impulse_responses(posterior, horizon = 60)
plot(irf, probability = 0.68)
```
## Installation
#### The first time you install the package
You must have a **cpp** compiler. Follow the instructions from [Section 1.3. by Eddelbuettel & François (2023)](https://cran.r-project.org/package=Rcpp/vignettes/Rcpp-FAQ.pdf). In short, for **Windows:** install [RTools](https://CRAN.R-project.org/bin/windows/Rtools/), for **macOS:** install [Xcode Command Line Tools](https://www.freecodecamp.org/news/install-xcode-command-line-tools/), and for **Linux:** install the standard development packages.
#### Once that's done:
Just open your **R** and type:
```
install.packages("bsvarSIGNs")
```
The developer's version of the package with the newest features can be installed by typing:
```
devtools::install_github("bsvars/bsvarSIGNs")
```
## Development
The package is under intensive development. Your help is most welcome! Please, have a look at the [roadmap](https://github.com/bsvars/bsvarSIGNs/milestones) and [report a bug](https://github.com/bsvars/bsvarSIGNs/issues). Thank you!
## About the authors
**Xiaolei** is a PhD candidate at the University of Melbourne. He is interested in Bayesian econometrics and time series analysis and is the author and maintainer of the **bsvarSIGNs** package.
<a href="mailto:[email protected]"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/solid/envelope.svg" width="40" height="40"/> </a>
<a href="https://github.com/adamwang15"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/github.svg" width="40" height="40"/> </a>
<a href="https://orcid.org/0009-0005-6192-9061"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/orcid.svg" width="40" height="40"/> </a>
<a href="https://www.linkedin.com/in/xiaolei-adam-wang/"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/linkedin.svg" width="40" height="40"/> </a>
**Tomasz** is a Bayesian econometrician and a Senior Lecturer at the University of Melbourne. He develops methodology for empirical macroeconomic analyses and programs in **R** and **cpp** using **Rcpp**.
<a href="mailto:[email protected]"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/solid/envelope.svg" width="40" height="40"/> </a>
<a href="https://github.com/donotdespair"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/github.svg" width="40" height="40"/> </a>
<a href="https://orcid.org/0000-0003-2212-2378"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/orcid.svg" width="40" height="40"/> </a>
<a href="https://www.linkedin.com/in/tomaszwwozniak"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/linkedin.svg" width="40" height="40"/> </a>
<a href="http://scholar.google.com/citations?user=2uWpFrYAAAAJ&hl"> <img src="https://raw.githubusercontent.com/jpswalsh/academicons/refs/heads/master/svg/google-scholar-square.svg" width="40" height="40"/> </a>
<a href="https://arxiv.org/a/wozniak_t_1"> <img src="https://raw.githubusercontent.com/jpswalsh/academicons/refs/heads/master/svg/arxiv-square.svg" width="40" height="40"/> </a>
<a href="https://fosstodon.org/@tomaszwozniak"> <img src="https://raw.githubusercontent.com/FortAwesome/Font-Awesome/6.x/svgs/brands/mastodon.svg" width="40" height="40"/> </a>
<a href="https://bsky.app/profile/tomaszwozniak.bsky.social"> <img src="https://upload.wikimedia.org/wikipedia/commons/7/7a/Bluesky_Logo.svg" width="40" height="40"/> </a>