-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize.py
329 lines (277 loc) · 10.5 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/python # -*- mode: python; python-indent-offset: 4 -*-
import argparse
import io
import aerofiles.openair
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.style as mplstyle
from matplotlib.backend_bases import MouseButton
from matplotlib.backends.backend_pdf import PdfPages
from shapely.geometry import Polygon, LineString
from shapely.validation import explain_validity
import shapely
import sys
from icecream import ic
import common
def plot_p(plt, p, color="black"):
plt.plot(p[1], p[0], '.', color=color)
def plot_line(plt, x1, y1, x2, y2, color="black"):
x = [x1, x2]
y = [y1, y2]
plt.plot(x, y, color=color, alpha=1.0, linewidth=0.5)
#print(f'plot_line(x1={x1}, y1={y1}, x2={x2}, y2={y2})')
last_pos = None
def plot_reset():
global last_pos
last_pos = None
def plot_to(plt, pos, color="black", label=True):
global last_pos
global args
#print(f'plot_to({common.strLatLon(pos)}')
if last_pos != None:
plot_line(plt, last_pos[1], last_pos[0], pos[1], pos[0], color)
#print(f'plot_to({common.strLatLon(last_pos)} -> {common.strLatLon(pos)}')
last_pos = pos
if label and args.show_coords:
plt.annotate(common.strLatLon(pos), (pos[1], pos[0]), color=color)
ax = None
fig = None
zoom = 1
def plot_shapely(plt, shape):
if isinstance(shape, shapely.Polygon):
y,x = shape.exterior.xy
plt.plot(x, y, color="red")
plt.fill(x, y, alpha=0.5, color="red")
elif isinstance(shape, shapely.LineString) or isinstance(shape, shapely.Point):
y,x = shape.xy
plt.plot(x, y, color="red")
elif isinstance(shape, shapely.MultiPolygon) or isinstance(shape, shapely.GeometryCollection):
for polygon in shape.geoms:
plot_shapely(plt, polygon)
else:
print(type(shape))
def plot(records, overlap):
global args
global ax
global fig
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
a, = plt.plot([], [])
color_num = 30
cmap = plt.cm.get_cmap('hsv', color_num)
color_pos = 25
plot_reset()
if args.intersects:
for r1,r2 in overlap:
intersection = shapely.intersection(r1["polygon"], r2["polygon"])
# 1 degree is approx. 110km.
# We define a maximum area for intersection. If bigger, then ignore
area_max = 1/110 * 1/110
if intersection.area < area_max:
plot_shapely(plt, intersection)
continue
if isinstance(intersection, shapely.MultiPolygon) or isinstance(intersection, shapely.GeometryCollection):
for polygon in intersection.geoms:
x,y = polygon.exterior.xy
plt.plot(x, y, color="red")
plt.fill(x, y, alpha=0.5, color="red")
elif isinstance(intersection, shapely.LineString):
plt.plot(*intersection.xy)
else:
x,y = intersection.exterior.xy
plt.plot(x, y, color="red")
plt.fill(x, y, alpha=0.5, color="red")
if True:
for record in records:
plot_reset()
if args.intersects:
color = "black"
for r1,r2 in overlap:
if record == r1 or record == r2:
color = "blue"
break
else:
color = cmap(color_pos)
color_pos = (color_pos + 7) % color_num
if "color" in record:
color = record["color"]
first_pos = None
for element in record["elements_resolved"]:
if element["type"] == "point":
if first_pos == None:
first_pos = element["location"]
label = not ("computed" in element and element["computed"] == True)
plot_to(plt, element["location"], color, label)
else:
print(f'Unknown element type: {element["type"]}')
sys.exit(1)
if last_pos != first_pos:
plot_to(plt, first_pos, color, False)
plt.title("Airspace")
plt.xlabel('Longitude')
plt.ylabel('Latitude')
ax.axis('equal')
plt.subplots_adjust(left=0.05, right=1.0, top=1.0, bottom=0.05)
fig.canvas.mpl_connect('button_press_event', on_press)
#fig.canvas.mpl_connect('pick_event', on_press)
#with PdfPages('test.pdf') as pdf:
# pdf.savefig()
plt.savefig("test.pdf")
plt.savefig("test.svg", bbox_inches="tight")
# ax.margins(x=8.877760411607648,y=48.773972056413555)
plt.show()
def on_press(event):
global ax, fig, zoom
if event.button == MouseButton.LEFT:
zoom = zoom / 2
if event.button == MouseButton.MIDDLE or event.button == MouseButton.RIGHT:
zoom = zoom * 2
x,y = event.xdata, event.ydata
lat_lon = common.strLatLon([y,x])
print(f'Zooming to {y},{x} = {lat_lon}')
ax.set_xlim(x-zoom, x+zoom)
ax.set_ylim(y-zoom, y+zoom)
fig.canvas.draw()
def airspace_readfile(filename):
global args
print("Reading openair file", filename)
# read file into a StringIO, as we have to parse it multiple times
content = io.StringIO()
with open(filename, encoding='latin-1', newline='') as fp:
content.write(fp.read())
content.seek(0, io.SEEK_SET)
reader = aerofiles.openair.Reader(content)
records = []
for record, error in reader:
if error:
raise error
if args.only:
if common.getAirspaceName2(record) in args.only:
records.append(record)
else:
records.append(record)
common.resolveRecordArcs(records)
common.createPolygons(records)
common.checkHeights(records)
return records
def airspace_find_pt(record, element_searched):
for element in record["elements_resolved"]:
if element["type"] == "point":
computed = ("computed" in element and element["computed"] == True)
if computed:
continue
loc1 = element["location"]
loc2 = element_searched["location"]
if loc1[0] == loc2[0] and loc1[1] == loc2[1]:
return element
return None
# How similar is record2 to record1?
# 0-100%
def airspace_similar(record1, record2):
identical = 0
different = 0
if record1["name"] != record2["name"]:
return 0
if record1["class"] != record2["class"]:
return 0
e1_count = 0
e2_count = 0
for e1 in record1["elements_resolved"]:
computed = ("computed" in e1 and e1["computed"] == True)
if computed:
continue
e1_count = e1_count + 1
e2 = airspace_find_pt(record2, e1)
if e2 == None:
different = different + 1
else:
identical = identical + 1
for e2 in record2["elements_resolved"]:
computed = ("computed" in e2 and e2["computed"] == True)
if computed:
continue
e2_count = e2_count + 1
e1 = airspace_find_pt(record1, e1)
if e2 == None:
different = different + 1
else:
identical = identical + 1
if e1_count+e2_count == 0:
return 0 # Empty airspaces are always different
ic(e1_count, e2_count, identical)
return 100*identical/(e1_count+e2_count)
def airspace_find_similar(record1, records2):
best_simular = 0
best_simular_r2 = None
for record2 in records2:
simular = airspace_similar(record1, record2)
if simular > best_simular:
best_simular = simular
best_simular_r2 = record2
return (best_simular, best_simular_r2)
#matplotlib.use('Qt5Agg')
#matplotlib.use('Gtk4Agg')
matplotlib.use('TkAgg')
parser = argparse.ArgumentParser(description='Plot OpenAir airspace file')
parser.add_argument("-e", "--errors-only", action="store_true",
help="Print only errors and no warnings")
parser.add_argument("-n", "--no-arc", action="store_true",
help="Resolve arcs as straight line")
parser.add_argument("-f", "--fast-arc", action="store_true",
help="Resolve arcs with less quality (10 degree steps)")
parser.add_argument("-c", "--show-coords", action="store_true",
help="Show latitude/longitude of points in plot")
parser.add_argument("-o", "--only", action="append",
help="Show only given airspace")
parser.add_argument("-i", "--intersects", action="store_true",
help="Show intersection between airspaces")
parser.add_argument("-d", "--diff",
help="Show difference to the given airspace file")
parser.add_argument("filename")
args = parser.parse_args()
common.setArgs(args)
overlap = []
records = airspace_readfile(args.filename)
if args.diff:
records_1 = airspace_readfile(args.diff)
ic(len(records_1), len(records))
identical = []
deleted = []
added = []
for record1 in records_1:
asn = common.getAirspaceName2(record1)
breakpoint()
(best_simular, best_simular_r) = airspace_find_similar(record1, records)
if best_simular == 100:
# They are identical
identical.append(record1)
best_simular_r["color"] = "grey"
elif best_simular > 50:
# They are similar but changed
best_simular_r["color"] = "orange"
record1["color"] = "blue"
records.append(record1)
if False:
try:
print("overlap", asn)
intersection = shapely.intersection(record1["polygon"], record2["polygon"])
area = intersection.area
if area > 0:
overlap.append([record1, record2])
except shapely.errors.GEOSException as e:
problem(Prio.ERR, "Invalid Overlapping Airspaces " + getAirspaceName2(record1) + ", " + getAirspaceName2(record2), e)
else:
# Removed
record1["color"] = "red"
records.append(record1)
for record2 in records:
asn = common.getAirspaceName2(record2)
(best_simular, best_simular_r) = airspace_find_similar(record2, records_1)
if best_simular < 50:
# New entry
record2["color"] = "green"
records.append(record1)
#sys.exit(0)
if args.intersects:
overlap = common.getOverlappingAirspaces(records)
plot(records, overlap)