-
Notifications
You must be signed in to change notification settings - Fork 26
/
distance_test.go
249 lines (214 loc) · 10.8 KB
/
distance_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
package kmeans
/*
TODO: Figure out the limit in the column number and
how to format the unfinished lines due to the limitation
Test for Weighted Minkowski Distance should be improved
*/
import (
"math"
"testing"
)
func TestLPNorm(t *testing.T) {
vector := []float64{3., 4.}
const l1Out, l2Out = 7., 5.
l1Norm, _ := LPNorm(vector, 1.)
l2Norm, _ := LPNorm(vector, 2.)
if l1Norm != l1Out {
t.Errorf("Computed l1 Norm: %f\nActual l1 Norm: %f", l1Norm, l1Out)
}
if l2Norm != l2Out {
t.Errorf("Computed l2 Norm: %f\nActual l2 Norm: %f", l2Norm, l2Out)
}
}
func TestManhattanDistance(t *testing.T) {
firstVector := []float64{1., 2., 3., 2}
secondVector := []float64{3., 4., 5., -1}
const out = 9.
mDistance, _ := ManhattanDistance(firstVector, secondVector)
if mDistance != out {
t.Errorf("\nComputed Manhattan Distance: %f\nActual Manhattan Distance: %f", mDistance, out)
}
}
func TestEuclideanDistance(t *testing.T) {
firstVector := []float64{5., 12.}
secondVector := []float64{0., 0.}
thirdVector := []float64{8., 15.}
fourthVector := []float64{20., 20.}
out2 := math.Sqrt(18)
const out1, out3 = 13., 17.
firstEuclideanDistance, _ := EuclideanDistance(firstVector, secondVector)
secondEuclideanDistance, _ := EuclideanDistance(firstVector, thirdVector)
thirdEuclideanDistance, _ := EuclideanDistance(thirdVector, secondVector)
anotherFirst, _ := EuclideanDistance(thirdVector, fourthVector)
if out1 != firstEuclideanDistance {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", firstEuclideanDistance, out1)
}
if out1 != anotherFirst {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", firstEuclideanDistance, out1)
}
if out2 != secondEuclideanDistance {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", secondEuclideanDistance, out2)
}
if out3 != thirdEuclideanDistance {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", thirdEuclideanDistance, out3)
}
}
func TestSquareEuclideanDistance(t *testing.T) {
firstVector := []float64{5., 12.}
secondVector := []float64{0., 0.}
thirdVector := []float64{8., 15.}
fourthVector := []float64{20., 20.}
const out1, out3 = 169., 289.
firstSquaredEuclideanDistance, _ := SquaredEuclideanDistance(firstVector, secondVector)
thirdSquaredEuclideanDistance, _ := SquaredEuclideanDistance(thirdVector, secondVector)
anotherFirst, _ := SquaredEuclideanDistance(thirdVector, fourthVector)
if out1 != firstSquaredEuclideanDistance {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", firstSquaredEuclideanDistance, out1)
}
if out1 != anotherFirst {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", firstSquaredEuclideanDistance, out1)
}
if out3 != thirdSquaredEuclideanDistance {
t.Errorf("\nComputed Euclidean Distance: %f\nActual Euclidean Distance: %f", thirdSquaredEuclideanDistance, out3)
}
}
func TestMinkowskiDistance(t *testing.T) {
// p = 1 Test
// Should be equal to Manhattan Distance
firstVector := []float64{1., 2., 3., 2}
secondVector := []float64{3., 4., 5., -1}
mDistance, _ := ManhattanDistance(firstVector, secondVector)
l1MinkowskiDistance, _ := MinkowskiDistance(firstVector, secondVector, 1.)
if mDistance != l1MinkowskiDistance {
t.Errorf("\nComputed l1 Minkowski Distance: %f\nComputed Manhattan Distance: %f", l1MinkowskiDistance, mDistance)
}
// p = 2 Test
// Should be equal to Euclidean Distance
firstVector = []float64{5., 12.}
secondVector = []float64{0., 0.}
thirdVector := []float64{8., 15.}
fourthVector := []float64{20., 20.}
firstEuclideanDistance, _ := EuclideanDistance(firstVector, secondVector)
anotherFirstEuclideanDistance, _ := EuclideanDistance(thirdVector, fourthVector)
secondEuclideanDistance, _ := EuclideanDistance(firstVector, thirdVector)
thirdEuclideanDistance, _ := EuclideanDistance(thirdVector, secondVector)
firstl2MinkowskiDistance, _ := MinkowskiDistance(firstVector, secondVector, 2.)
anotherFirstl2MinkowskiDistance, _ := MinkowskiDistance(thirdVector, fourthVector, 2.)
secondl2MinkowskiDistance, _ := MinkowskiDistance(firstVector, thirdVector, 2.)
thirdl2MinkowskiDistance, _ := MinkowskiDistance(thirdVector, secondVector, 2.)
if firstEuclideanDistance != firstl2MinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nComputed Euclidean Distance: %f", firstl2MinkowskiDistance, firstEuclideanDistance)
}
if secondEuclideanDistance != secondl2MinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nComputed Euclidean Distance: %f", secondl2MinkowskiDistance, secondEuclideanDistance)
}
if thirdEuclideanDistance != thirdl2MinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nComputed Euclidean Distance: %f", thirdl2MinkowskiDistance, thirdEuclideanDistance)
}
if anotherFirstEuclideanDistance != firstl2MinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nComputed Euclidean Distance: %f", anotherFirstl2MinkowskiDistance, anotherFirstEuclideanDistance)
}
// p = 3 and p = 4 Test
const l3Minkowski, l4Minkowski, precision = 12.282642, 12.089418, 1000000.
computedl3Minkowski, _ := MinkowskiDistance(firstVector, secondVector, 3.)
computedl4Minkowski, _ := MinkowskiDistance(firstVector, secondVector, 4.)
computedl3Minkowski = float64(int(computedl3Minkowski*precision)) / precision
computedl4Minkowski = float64(int(computedl4Minkowski*precision)) / precision
if l3Minkowski != computedl3Minkowski {
t.Errorf("\nComputed l3 Minkowski Distance: %f\nActual l3 Minkowski Distance: %f", computedl3Minkowski, l3Minkowski)
}
if l4Minkowski != computedl4Minkowski {
t.Errorf("\nComputed l4 Minkowski Distance: %f\nActual l4 Minkowski Distance: %f", computedl4Minkowski, l4Minkowski)
}
}
func TestWeightedMinkowskiDistance(t *testing.T) {
// Weight Vector is all 1.
// Results should be same when we do not apply any weighting vector
firstVector := []float64{1., 2., 3., 2}
secondVector := []float64{3., 4., 5., -1}
weightVector := []float64{1., 1., 1., 1.}
l1MinkowskiDistance, _ := MinkowskiDistance(firstVector, secondVector, 1.)
l1WeightedMinkowskiDistance, _ := WeightedMinkowskiDistance(firstVector, secondVector, weightVector, 1.)
if l1MinkowskiDistance != l1WeightedMinkowskiDistance {
t.Errorf("\nComputed l1 Minkowski Distance: %f\nActual Weighted(1., 1., ...) l1 Minkowski Distance: %f", l1MinkowskiDistance, l1WeightedMinkowskiDistance)
}
firstVector = []float64{5., 12.}
secondVector = []float64{0., 0.}
thirdVector := []float64{8., 15.}
fourthVector := []float64{20., 20.}
firstl2MinkowskiDistance, _ := MinkowskiDistance(firstVector, secondVector, 2.)
anotherFirstl2MinkowskiDistance, _ := MinkowskiDistance(thirdVector, fourthVector, 2.)
secondl2MinkowskiDistance, _ := MinkowskiDistance(firstVector, thirdVector, 2.)
thirdl2MinkowskiDistance, _ := MinkowskiDistance(thirdVector, secondVector, 2.)
firstl2WeightedMinkowskiDistance, _ := WeightedMinkowskiDistance(firstVector, secondVector, weightVector, 2.)
anotherFirstl2WeightedMinkowskiDistance, _ := WeightedMinkowskiDistance(thirdVector, fourthVector, weightVector, 2.)
secondl2WeightedMinkowskiDistance, _ := WeightedMinkowskiDistance(firstVector, thirdVector, weightVector, 2.)
thirdl2WeightedMinkowskiDistance, _ := WeightedMinkowskiDistance(thirdVector, secondVector, weightVector, 2.)
if firstl2MinkowskiDistance != firstl2WeightedMinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nActual Weighted(1., 1., ...) l2 Minkowski Distance: %f", firstl2MinkowskiDistance, firstl2WeightedMinkowskiDistance)
}
if anotherFirstl2MinkowskiDistance != anotherFirstl2WeightedMinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nActual Weighted(1., 1., ...) l2 Minkowski Distance: %f", anotherFirstl2MinkowskiDistance, anotherFirstl2WeightedMinkowskiDistance)
}
if secondl2MinkowskiDistance != secondl2WeightedMinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nActual Weighted(1., 1., ...) l2 Minkowski Distance: %f", secondl2MinkowskiDistance, secondl2WeightedMinkowskiDistance)
}
if thirdl2MinkowskiDistance != thirdl2WeightedMinkowskiDistance {
t.Errorf("\nComputed l2 Minkowski Distance: %f\nActual Weighted(1., 1., ...) l2 Minkowski Distance: %f", thirdl2MinkowskiDistance, thirdl2WeightedMinkowskiDistance)
}
}
func TestChebyshevDistance(t *testing.T) {
firstVector := []float64{1., 2., 3., 4.}
secondVector := []float64{3., -4., 6., 1.5}
thirdVector := []float64{4., 3., -2.5, -5.}
const firstActual, secondActual = 6., 8.5
firstComputed, _ := ChebyshevDistance(firstVector, secondVector)
secondComputed, _ := ChebyshevDistance(secondVector, thirdVector)
if firstComputed != firstActual {
t.Errorf("\nComputed Chebyshev Distance: %f\nActual Chebyshev Distance: %f", firstComputed, firstActual)
}
if secondComputed != secondActual {
t.Errorf("\nComputed Chebyshev Distance: %f\nActual Chebyshev Distance: %f", secondComputed, secondActual)
}
}
func TestHammingDistance(t *testing.T) {
firstVector := []float64{1., 2., 2.5, 3., 4.}
secondVector := []float64{1., 2.5, 3., 3., 4.}
thirdVector := []float64{1., 2., 3., 4., 5., 6.}
fourthVector := []float64{1., 1., 1., 1., 1., 1.}
const firstActual, secondActual = 2, 5
firstComputed, _ := HammingDistance(firstVector, secondVector)
secondComputed, _ := HammingDistance(thirdVector, fourthVector)
if firstComputed != firstActual {
t.Errorf("\nComputed Hamming Distance: %f\nActual Hamming Distance: %f", firstComputed, firstActual)
}
if secondComputed != secondActual {
t.Errorf("\nComputed Hamming Distance: %f\nActual Hmming Distance: %f", secondComputed, secondActual)
}
}
func TestBrayCurtisDistance(t *testing.T) {
firstVector := []float64{1., 2., 3., 4., 5.}
secondVector := []float64{1.5, 2.5, 5., 5., 6.}
thirdVector := []float64{3., 2., 4., 6.5, 7}
fourthVector := []float64{1., 6., 3., 5.5, 4.5}
const firstActual, secondActual, precision = 0.14285, 0.24705, 100000
firstComputed, _ := BrayCurtisDistance(firstVector, secondVector)
secondComputed, _ := BrayCurtisDistance(thirdVector, fourthVector)
firstComputed = float64(int(firstComputed*precision)) / precision
secondComputed = float64(int(secondComputed*precision)) / precision
if firstComputed != firstActual {
t.Errorf("\nComputed Bray Curtis Distance: %f\nActual Bray Curtis Distance: %f", firstComputed, firstActual)
}
if secondComputed != secondActual {
t.Errorf("\nComputed Bray Curtis Distance: %f\nActual Bray Curtis Distance: %f", secondComputed, secondActual)
}
}
func TestCanberraDistance(t *testing.T) {
firstVector := []float64{3., 4., 5., -2., 4.}
secondVector := []float64{2., 6., 5., 3., -1.}
const firstActual = 2.4
firstComputed, _ := CanberraDistance(firstVector, secondVector)
if firstActual != firstComputed {
t.Errorf("Computed Canberra Distance: %f\n Actual Canberra Distance: %f", firstComputed, firstActual)
}
}