-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathDijkstraSP.java
217 lines (195 loc) · 8 KB
/
DijkstraSP.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*************************************************************************
* Compilation: javac DijkstraSP.java
* Execution: java DijkstraSP input.txt s
* Dependencies: EdgeWeightedDigraph.java IndexMinPQ.java Stack.java DirectedEdge.java
* Data files: http://algs4.cs.princeton.edu/44sp/tinyEWD.txt
* http://algs4.cs.princeton.edu/44sp/mediumEWD.txt
* http://algs4.cs.princeton.edu/44sp/largeEWD.txt
*
* Dijkstra's algorithm. Computes the shortest path tree.
* Assumes all weights are nonnegative.
*
* % java DijkstraSP tinyEWD.txt 0
* 0 to 0 (0.00)
* 0 to 1 (1.05) 0->4 0.38 4->5 0.35 5->1 0.32
* 0 to 2 (0.26) 0->2 0.26
* 0 to 3 (0.99) 0->2 0.26 2->7 0.34 7->3 0.39
* 0 to 4 (0.38) 0->4 0.38
* 0 to 5 (0.73) 0->4 0.38 4->5 0.35
* 0 to 6 (1.51) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
* 0 to 7 (0.60) 0->2 0.26 2->7 0.34
*
* % java DijkstraSP mediumEWD.txt 0
* 0 to 0 (0.00)
* 0 to 1 (0.71) 0->44 0.06 44->93 0.07 ... 107->1 0.07
* 0 to 2 (0.65) 0->44 0.06 44->231 0.10 ... 42->2 0.11
* 0 to 3 (0.46) 0->97 0.08 97->248 0.09 ... 45->3 0.12
* 0 to 4 (0.42) 0->44 0.06 44->93 0.07 ... 77->4 0.11
* ...
*
*************************************************************************/
/**
* The <tt>DijkstraSP</tt> class represents a data type for solving the
* single-source shortest paths problem in edge-weighted digraphs
* where the edge weights are nonnegative.
* <p>
* This implementation uses Dijkstra's algorithm with a binary heap.
* The constructor takes time proportional to <em>E</em> log <em>V</em>,
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <tt>distTo()</tt> and <tt>hasPathTo()</tt> methods take
* constant time and the <tt>pathTo()</tt> method takes time proportional to the
* number of edges in the shortest path returned.
* <p>
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class DijkstraSP {
private double[] distTo; // distTo[v] = distance of shortest s->v path
private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
private IndexMinPQ<Double> pq; // priority queue of vertices
/**
* Computes a shortest paths tree from <tt>s</tt> to every other vertex in
* the edge-weighted digraph <tt>G</tt>.
* @param G the edge-weighted digraph
* @param s the source vertex
* @throws IllegalArgumentException if an edge weight is negative
* @throws IllegalArgumentException unless 0 ≤ <tt>s</tt> ≤ <tt>V</tt> - 1
*/
public DijkstraSP(EdgeWeightedDigraph G, int s) {
for (DirectedEdge e : G.edges()) {
if (e.weight() < 0)
throw new IllegalArgumentException("edge " + e + " has negative weight");
}
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
// relax vertices in order of distance from s
pq = new IndexMinPQ<Double>(G.V());
pq.insert(s, distTo[s]);
while (!pq.isEmpty()) {
int v = pq.delMin();
for (DirectedEdge e : G.adj(v))
relax(e);
}
// check optimality conditions
assert check(G, s);
}
// relax edge e and update pq if changed
private void relax(DirectedEdge e) {
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight()) {
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
else pq.insert(w, distTo[w]);
}
}
/**
* Returns the length of a shortest path from the source vertex <tt>s</tt> to vertex <tt>v</tt>.
* @param v the destination vertex
* @return the length of a shortest path from the source vertex <tt>s</tt> to vertex <tt>v</tt>;
* <tt>Double.POSITIVE_INFINITY</tt> if no such path
*/
public double distTo(int v) {
return distTo[v];
}
/**
* Is there a path from the source vertex <tt>s</tt> to vertex <tt>v</tt>?
* @param v the destination vertex
* @return <tt>true</tt> if there is a path from the source vertex
* <tt>s</tt> to vertex <tt>v</tt>, and <tt>false</tt> otherwise
*/
public boolean hasPathTo(int v) {
return distTo[v] < Double.POSITIVE_INFINITY;
}
/**
* Returns a shortest path from the source vertex <tt>s</tt> to vertex <tt>v</tt>.
* @param v the destination vertex
* @return a shortest path from the source vertex <tt>s</tt> to vertex <tt>v</tt>
* as an iterable of edges, and <tt>null</tt> if no such path
*/
public Iterable<DirectedEdge> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
path.push(e);
}
return path;
}
// check optimality conditions:
// (i) for all edges e: distTo[e.to()] <= distTo[e.from()] + e.weight()
// (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
private boolean check(EdgeWeightedDigraph G, int s) {
// check that edge weights are nonnegative
for (DirectedEdge e : G.edges()) {
if (e.weight() < 0) {
System.err.println("negative edge weight detected");
return false;
}
}
// check that distTo[v] and edgeTo[v] are consistent
if (distTo[s] != 0.0 || edgeTo[s] != null) {
System.err.println("distTo[s] and edgeTo[s] inconsistent");
return false;
}
for (int v = 0; v < G.V(); v++) {
if (v == s) continue;
if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
System.err.println("distTo[] and edgeTo[] inconsistent");
return false;
}
}
// check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
for (int v = 0; v < G.V(); v++) {
for (DirectedEdge e : G.adj(v)) {
int w = e.to();
if (distTo[v] + e.weight() < distTo[w]) {
System.err.println("edge " + e + " not relaxed");
return false;
}
}
}
// check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
for (int w = 0; w < G.V(); w++) {
if (edgeTo[w] == null) continue;
DirectedEdge e = edgeTo[w];
int v = e.from();
if (w != e.to()) return false;
if (distTo[v] + e.weight() != distTo[w]) {
System.err.println("edge " + e + " on shortest path not tight");
return false;
}
}
return true;
}
/**
* Unit tests the <tt>DijkstraSP</tt> data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
int s = Integer.parseInt(args[1]);
// compute shortest paths
DijkstraSP sp = new DijkstraSP(G, s);
// print shortest path
for (int t = 0; t < G.V(); t++) {
if (sp.hasPathTo(t)) {
StdOut.printf("%d to %d (%.2f) ", s, t, sp.distTo(t));
if (sp.hasPathTo(t)) {
for (DirectedEdge e : sp.pathTo(t)) {
StdOut.print(e + " ");
}
}
StdOut.println();
}
else {
StdOut.printf("%d to %d no path\n", s, t);
}
}
}
}