-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathimfil.m
242 lines (242 loc) · 6.97 KB
/
imfil.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
function [x,lhist,histout] = imfil(x0,f,budget,scales,parms)
%
%
% C. T. Kelley, January 9, 1998
%
% This code comes with no guarantee or warranty of any kind.
%
% function [x,fcount,histout] = imfil(x0,f,budget,scales,parms)
%
% Unconstrained implicit filtering code
%
% IMPLICIT FILTERING with SR1 and BFGS quasi-Newton methods
%
% Input: x0 = initial iterate
% f = objective function,
% the calling sequence for f should be [fout]=f(x)
% budget = max f evals
% The iteration will terminate after the iteration that
% exhausts the budget, default=50*number of variables
% scales = the decreasing sequence of difference increments
% This is an optional argument and the default is
% 1, 1/2, ... 1/128
% parms = optional argument = array of conrol praamters
%
% parms(1) =
% target = value of f at which the iteration should be terminated
% This is an optional argument, which you SHOULD set to
% something reasonable for your problem. The default is
% as close to no limit as we can get, -1.d8
%
% parms(2) = 0 for centered diffs, 1 for forward diffs
% default and recommended value = 0
%
% parms(3) = quasi-Newton method selection
% 0 = none, 1 = bfgs, 2 = SR1
% default and recommend value = 1
%
%
% Output: x = estimated minimizer
% lhist = number of nonzero rows in histout
% = number of nonlinear iterations for all the scales
% histout = iteration history, updated after each nonlinear iteration
% = lhist x 5 array, the rows are
% [fcount, fval, norm(sgrad), norm(step), iarm]
% fcount = cumulative function evals
% fval = current function value
% norm(sgrad) = current simplex grad norm
% norm(step) = norm of last step
% iarm=line searches to date
% =-1 means first iterate at a new scale
%
% This code uses centered difference approximations to the gradient. Setting
% fdiff = 1 will change this to forward differences. We do not recommend
% that.
%
% set debug = 1 to print iteration stats
%
debug=0;
%
fcount=0;
%
% And now for the knobs. Implicit filtering has too many of these and they
% can make a difference. The ones we use are:
%
% min_gscal (default = .01)
% if norm(difference_grad) < min_gscal*h we terminate at the scale
% with success
%
% maxit and maxitarm (defaults 2 and 5)
% At most maxit*n iterations are taken for each scale and at most
% maxitarm step length reductions are allowed
%
% nterm controls termination on stencil failure for centered diffs (defalt = 0)
% = 0 to terminate on stencil failure before starting the line search
% = 1 to ignore stencil failure
%
% iquit (default = 3)
% After iquit consecutive line search failures, we terminate the iteration
%
% beta (default = .5)
% step size reduction factor in the line search
%
% set the knobs
%
% min_gscal=.5;
min_gscal=.01;
% maxit=10; maxitarm=10; iquit=3; beta=.1;
maxit=200; maxitarm=10; iquit=3; beta=.5; nterm=0;
%
% set up the difference scales
%
quasi=1; fdiff=0; ftol=-1.d8;
if nargin == 5
np=length(parms); ftol=parms(1);
if np>1 & parms(2) == 1 fdiff=1; end
if np==3 quasi=parms(3); end
end
nterm=fdiff+nterm;
if nargin>3
dscal=scales;
else
dscal=-(0:8)'; dscal=2.^dscal;
end
nscal=length(dscal);
n=length(x0);
if nargin> 2; flim=budget;
else flim = 50*n; end
%
% initialize histout
%
lhist=0;
histout=zeros(nscal*maxit*n*maxitarm,5);
%
% sweep through the scales
%
x=x0; xold=x0; n=length(x0); v=eye(n); xc=x0; hess=eye(n); ns=0; iquitc=0;
% for ns=1:nscal
while (ns < nscal & fcount <= flim & iquitc < iquit)
ns=ns+1;
itc=0; h=dscal(ns); z0=x; fval=feval(f,x); fcount=fcount+1;
stol=min_gscal*h; iarm=0; lok=1;
[sgrad,fb,xb,sflag] =simpgrad(x,f,h*v,fval,fdiff);
fcount=fcount+(2-fdiff)*n; lhist=lhist+1;
histout(lhist,:)=[fcount, fval, norm(sgrad), 0, -1];
if norm(sgrad,inf) < stol | (sflag+nterm)==0
%
% Convergence at this scale on stencil failure or tolerance match
%
gc=sgrad; lhist=lhist+1;
if (sflag+nterm) ~= 0
iquitc=iquitc+1;
else
iquitc=0;
end
histout(lhist,:)=[fcount, fval, norm(sgrad), 0, -1];
else
%
% Take a few quasi-Newton iterates
%
iquitc=0;
while itc < maxit*n & fval > ftol & norm(sgrad,inf) >= stol...
&lok==1 & fcount < flim & sflag+nterm > 0
itc=itc+1;
%
% compute the difference gradient, scale it
%
gc=sgrad;
if(itc > 1)
[sgrad,fb,xb,sflag]=simpgrad(x,f,h*v,fval,fdiff);
fcount=fcount+(2-fdiff)*n;
end
dgrad=sgrad;
%
% watch out for stencil failure!
%
if sflag+nterm > 0
%
% update iterate and Hessian
%
if itc > 1 & quasi > 0
if quasi==1
hess = bfupdate(x, xc, sgrad, gc, hess);
else
hess = sr1up(x, xc, sgrad, gc, hess);
end
end;
xc=x;
%
% new direction and line search
%
if quasi > 0
sdir=hess\dgrad;
else
sdir=dgrad;
end
[fct, x, fval, hess, iarm]=...
linearm(f, sdir, fval, x, hess, maxitarm,beta,h,quasi,fdiff);
fcount=fcount+fct;
%
% reduce scale upon failure of line search
%
if iarm >= maxitarm
lok=0;
x=xb; fval=fb;
end
end
%
% keep the records
%
stepn=norm(xold-x,inf); xold=x; lhist=lhist+1;
histout(lhist,:)=[fcount, fval, norm(sgrad), stepn, iarm];
%
end % end of nonlinear step
%
end % end of sweep through the scale
if debug ==1
[ns,fval,h,norm(sgrad),itc]
end
end % end of loop over the scales
%
% BFGS update of Hessian; nothing fancy
%
function hess = bfupdate(x, xc, sgrad, gc, hess)
y=sgrad-gc; s=x-xc; z=hess*s;
if y'*s > 0
hess = hess + (y*y'/(y'*s)) - (z*z'/(s'*z));
end
%
% SR1 update
%
function hess = sr1up(x, xc, sgrad, gc, hess)
y=sgrad-gc; s=x-xc; z=y - hess*s;
if z'*s ~=0
ptst=z'*(hess*z)+(z'*z)*(z'*z)/(z'*s);
if ptst > 0 hess = hess + (z*z')/(z'*s); end
end
%
% Line search for implicit filtering
%
function [fct, x, fval, hessp, iarm]=...
linearm(f, sdir, fold, xc, hess, maxitarm,beta,h,quasi,fdiff)
lambda=1;
n=length(xc);
hessp=hess;
iarm=-1;
fct=0;
aflag=1;
dd=sdir;
smax=10*min(h,1); if norm(dd) > smax dd=smax*dd/norm(dd); end
x=xc;
fval=fold;
while iarm < maxitarm & aflag==1
d=-lambda*dd;
iarm=iarm+1;
xt=x+d; ft=feval(f,xt); fct=fct+1;
if ft < fval & aflag==1; aflag=0; fval=ft; x=xt; end
if aflag==1; lambda=beta*lambda; end
end
if iarm == maxitarm & aflag == 1
disp(' line search failure'); [iarm, h, quasi, fdiff]
% hessp=eye(n);
end