-
Notifications
You must be signed in to change notification settings - Fork 195
/
KansaLaplaceMixedBC_2D.m
64 lines (64 loc) · 2.76 KB
/
KansaLaplaceMixedBC_2D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
% KansaLaplaceMixedBC_2D
% Script that performs Kansa collocation for 2D Laplace equation
% with mixed BCs
% Calls on: CreatePoints, DistanceMatrix, DifferenceMatrix, PlotSurf,
% PlotError2D
% IMQ RBF and its Laplacian
rbf = @(e,r) 1./sqrt(1+(e*r).^2); ep = 3;
dyrbf = @(e,r,dy) -dy*e^2./(1+(e*r).^2).^(3/2);
Lrbf = @(e,r) e^2*((e*r).^2-2)./(1+(e*r).^2).^(5/2);
% Exact solution and its Laplacian for test problem
u = @(x,y) 1-0.9*x.^3+0*y;
Lu = @(x,y) -5.4*x+0*y;
% Collocation points and centers
N = 289; [collpts, N] = CreatePoints(N, 2, 'u');
indx1 = find(collpts(:,2)==0 & collpts(:,1)~=1); % Gamma_1
indx2 = find(collpts(:,1)==1 & collpts(:,2)~=1); % Gamma_2
indx3 = find(collpts(:,2)==1 & collpts(:,1)~=0); % Gamma_3
indx4 = find(collpts(:,1)==0 & collpts(:,2)~=0); % Gamma_4
bdypts = collpts([indx1;indx2;indx3;indx4],:); % uniform boundary points
[intpts, N] = CreatePoints(N, 2, 'c'); % interior Halton points
sn = sqrt(N); h = 1/(sn-1);
bdyctrs = bdypts; bdyctrs = (1+2*h)*bdyctrs-h;
ctrs = [intpts; bdyctrs];
% Create neval-by-neval equally spaced evaluation locations
% in the unit square
M = 1600; epoints = CreatePoints(M,2,'u');
% Compute evaluation matrix
DM_eval = DistanceMatrix(epoints,ctrs);
EM = rbf(ep,DM_eval);
exact = u(epoints(:,1),epoints(:,2));
% Compute blocks for collocation matrix
DM_int = DistanceMatrix(intpts,ctrs);
DM_bdy = DistanceMatrix(bdypts,ctrs);
dy_bdy = DifferenceMatrix(bdypts(:,2),ctrs(:,2));
LCM = Lrbf(ep,DM_int);
BCM1 = -dyrbf(ep,DM_bdy(1:sn-1,:),dy_bdy(1:sn-1,:));
BCM2 = rbf(ep,DM_bdy(sn:2*sn-2,:));
BCM3 = dyrbf(ep,DM_bdy(2*sn-1:3*sn-3,:),...
dy_bdy(2*sn-1:3*sn-3,:));
BCM4 = rbf(ep,DM_bdy(3*sn-2:end,:));
CM = [LCM; BCM1; BCM2; BCM3; BCM4];
% Create right-hand side
rhs = [Lu(intpts(:,1),intpts(:,2)); zeros(sn-1,1); ...
0.1*ones(sn-1,1); zeros(sn-1,1); ones(sn-1,1)];
% RBF solution
Pf = EM * (CM\rhs);
% Compute maximum error on evaluation grid
maxerr = norm(Pf-exact,inf);
rms_err = norm(Pf-exact)/sqrt(M);
fprintf('RMS error: %e\n', rms_err)
fprintf('Maximum error: %e\n', maxerr)
% Plot collocation points and centers
figure
hold on; plot(intpts(:,1),intpts(:,2),'bo');
plot(bdypts(:,1),bdypts(:,2),'rx');
plot(bdyctrs(:,1),bdyctrs(:,2),'gx'); hold off
fview = [-30,30]; % viewing angles for plot
caption = ['Nonsymmetric RBF solution '...
'false colored by maximum error.'];
xe = reshape(epoints(:,1),sqrt(M),sqrt(M));
ye = reshape(epoints(:,2),sqrt(M),sqrt(M));
PlotSurf(xe,ye,Pf,sqrt(M),exact,maxerr,fview,caption);
caption = 'Maximum error for nonsymmetric RBF solution.';
PlotError2D(xe,ye,Pf,exact,maxerr,sqrt(M),fview,caption)