-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathch_04.py
436 lines (396 loc) · 14.4 KB
/
ch_04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import sys
def test_closest_pair():
"""
>>> from random import randrange
>>> from random import seed; seed(2523)
>>> seq = [randrange(10**5) for i in range(100)]
>>> dd = float("inf")
>>> for x in seq:
... for y in seq:
... if x == y: continue
... d = abs(x-y)
... if d < dd:
... xx, yy, dd = x, y, d
...
>>> xx, yy
(29836, 29825)
>>> seq.sort()
>>> dd = float("inf")
>>> for i in range(len(seq)-1):
... x, y = seq[i], seq[i+1]
... if x == y: continue
... d = abs(x-y)
... if d < dd:
... xx, yy, dd = x, y, d
...
>>> xx, yy
(29825, 29836)
"""
def test_board():
"""
>>> board = [[0]*8 for i in range(8)]
>>> board[7][7] = -1
>>> cover(board)
22
>>> for row in board:
... print((" %2i"*8) % tuple(row))
3 3 4 4 8 8 9 9
3 2 2 4 8 7 7 9
5 2 6 6 10 10 7 11
5 5 6 1 1 10 11 11
13 13 14 1 18 18 19 19
13 12 14 14 18 17 17 19
15 12 12 16 20 17 21 21
15 15 16 16 20 20 21 -1
"""
def cover(board, lab=1, top=0, left=0, side=None):
if side is None: side = len(board)
# Side length of sub-board:
s = side // 2
# Offsets for outer/inner squares of sub-boards:
offsets = (0, -1), (side-1, 0)
for dy_outer, dy_inner in offsets:
for dx_outer, dx_inner in offsets:
# If the outer corner is not set...
if not board[top+dy_outer][left+dx_outer]:
# ... label the inner corner:
board[top+s+dy_inner][left+s+dx_inner] = lab
# Next label:
lab += 1
if s > 1:
for dy in [0, s]:
for dx in [0, s]:
# Recursive calls, if s is at least 2:
lab = cover(board, lab, top+dy, left+dx, s)
# Return the next available label:
return lab
def test_trav():
"""
>>> def trav(seq, i=0):
... if i==len(seq): return
... trav(seq, i+1)
...
>>> trav(range(100))
"""
# Using range(1000) should give max recursion depth exceeded
def test_recursive_insertion_sort():
"""
>>> from random import randrange
>>> seq = [randrange(1000) for i in range(100)]
>>> seq2 = list(seq)
>>> ins_sort_rec(seq, len(seq)-1)
>>> seq == seq2
False
>>> seq2.sort()
>>> seq == seq2
True
"""
def ins_sort_rec(seq, i):
if i==0: return # Base case -- do nothing
ins_sort_rec(seq, i-1) # Sort 0..i-1
j = i # Start "walking" down
while j > 0 and seq[j-1] > seq[j]: # Look for OK spot
seq[j-1], seq[j] = seq[j], seq[j-1] # Keep moving seq[j] down
j -= 1 # Decrement j
def test_insertion_sort():
"""
>>> from random import *
>>> seq = [randrange(1000) for i in range(100)]
>>> seq2 = list(seq)
>>> ins_sort(seq)
>>> seq == seq2
False
>>> seq2.sort()
>>> seq == seq2
True
"""
def ins_sort(seq):
for i in range(1,len(seq)): # 0..i-1 sorted so far
j = i # Start "walking" down
while j > 0 and seq[j-1] > seq[j]: # Look for OK spot
seq[j-1], seq[j] = seq[j], seq[j-1] # Keep moving seq[j] down
j -= 1 # Decrement j
def test_recursive_selection_sort():
"""
>>> from random import *
>>> seq = [randrange(1000) for i in range(100)]
>>> seq2 = list(seq)
>>> sel_sort_rec(seq, len(seq)-1)
>>> seq == seq2
False
>>> seq2.sort()
>>> seq == seq2
True
"""
def sel_sort_rec(seq, i):
if i==0: return # Base case -- do nothing
max_j = i # Idx. of largest value so far
for j in range(i): # Look for a larger value
if seq[j] > seq[max_j]: max_j = j # Found one? Update max_j
seq[i], seq[max_j] = seq[max_j], seq[i] # Switch largest into place
sel_sort_rec(seq, i-1) # Sort 0..i-1
def test_selection_sort():
"""
>>> from random import *
>>> seq = [randrange(1000) for i in range(100)]
>>> seq2 = list(seq)
>>> sel_sort(seq)
>>> seq == seq2
False
>>> seq2.sort()
>>> seq == seq2
True
"""
def sel_sort(seq):
for i in range(len(seq)-1,0,-1): # n..i+1 sorted so far
max_j = i # Idx. of largest value so far
for j in range(i): # Look for a larger value
if seq[j] > seq[max_j]: max_j = j # Found one? Update max_j
seq[i], seq[max_j] = seq[max_j], seq[i] # Switch largest into place
def test_naive_perm():
"""
>>> M = [2, 2, 0, 5, 3, 5, 7, 4]
>>> M[2] # c is mapped to a
0
>>> sorted(naive_max_perm(M))
[0, 2, 5]
"""
def naive_max_perm(M, A=None):
if A is None: # The elt. set not supplied?
A = set(range(len(M))) # A = {0, 1, ... , n-1}
if len(A) == 1: return A # Base case -- single-elt. A
B = set(M[i] for i in A) # The "pointed to" elements
C = A - B # "Not pointed to" elements
if C: # Any useless elements?
A.remove(C.pop()) # Remove one of them
return naive_max_perm(M, A) # Solve remaining problem
return A # All useful -- return all
def test_perm():
"""
>>> M = [2, 2, 0, 5, 3, 5, 7, 4]
>>> M[2] # c is mapped to a
0
>>> sorted(max_perm(M))
[0, 2, 5]
"""
def max_perm(M):
n = len(M) # How many elements?
A = set(range(n)) # A = {0, 1, ... , n-1}
count = [0]*n # C[i] == 0 for i in A
for i in M: # All that are "pointed to"
count[i] += 1 # Increment "point count"
Q = [i for i in A if count[i] == 0] # Useless elements
while Q: # While useless elts. left...
i = Q.pop() # Get one
A.remove(i) # Remove it
j = M[i] # Who's it pointing to?
count[j] -= 1 # Not anymore...
if count[j] == 0: # Is j useless now?
Q.append(j) # Then deal w/it next
return A # Return useful elts.
def test_alternate_perm():
"""
>>> M = [2, 2, 0, 5, 3, 5, 7, 4]
>>> M[2] # c is mapped to a
0
>>> sorted(alternate_max_perm(M))
[0, 2, 5]
"""
# A test of the tip that says the for loop can be replaced with the use of
# collections.Counter:
def alternate_max_perm(M):
# Satisfy the Python 2.6 test run:
if sys.version <= "3.1": return max_perm(M)
from collections import Counter
n = len(M) # How many elements?
A = set(range(n)) # A = {0, 1, ... , n-1}
count = [0]*n # C[i] == 0 for i in A
count = Counter(M)
Q = [i for i in A if count[i] == 0] # Useless elements
while Q: # While useless elts. left...
i = Q.pop() # Get one
A.remove(i) # Remove it
j = M[i] # Who's it pointing to?
count[j] -= 1 # Not anymore...
if count[j] == 0: # Is j useless now?
Q.append(j) # Then deal w/it next
return A # Return useful elts.
def test_counting_sort():
"""
>>> k = 100
>>> from random import *
>>> seq = [randrange(k) for i in range(100)]
>>> seq2 = list(seq)
>>> seq = counting_sort(seq) # counting_sort(seq, k)
>>> seq == seq2
False
>>> seq2.sort()
>>> seq == seq2
True
"""
def old_counting_sort(A, k): # Value range = 0..k-1
n = len(A)
B, C = [0]*n, [0]*k # Output and counts
for x in A:
C[x] += 1 # Count it
for x in range(1,k):
C[x] += C[x-1] # Make counts cumulative
for x in reversed(A):
C[x] -= 1 # Find position of x
B[C[x]] = x # Insert x at its position
return B
from collections import defaultdict
def counting_sort(A, key=lambda x: x):
B, C = [], defaultdict(list) # Output and "counts"
for x in A:
C[key(x)].append(x) # "Count" key(x)
for k in range(min(C), max(C)+1): # For every key in the range
B.extend(C[k]) # Add values in sorted order
return B
def test_naive_celeb():
"""
>>> from random import *
>>> n = 100
>>> G = [[randrange(2) for i in range(n)] for i in range(n)]
>>> c = randrange(n)
>>> c = 57 # For testing
>>> for i in range(n):
... G[i][c] = True
... G[c][i] = False
...
>>> naive_celeb(G)
57
"""
def naive_celeb(G):
n = len(G)
for u in range(n): # For every candidate...
for v in range(n): # For everyone else...
if u == v: continue # Same person? Skip.
if G[u][v]: break # Candidate knows other
if not G[v][u]: break # Other doesn't know candidate
else:
return u # No breaks? Celebrity!
return None # Couldn't find anyone
def test_celeb():
"""
>>> from random import *
>>> n = 100
>>> G = [[randrange(2) for i in range(n)] for i in range(n)]
>>> c = randrange(n)
>>> c = 57 # For testing
>>> for i in range(n):
... G[i][c] = True
... G[c][i] = False
...
>>> celeb(G)
57
"""
def celeb(G):
n = len(G)
u, v = 0, 1 # The first two
for c in range(2,n+1): # Others to check
if G[u][v]: u = c # u knows v? Replace u
else: v = c # Otherwise, replace v
if u == n: c = v # u was replaced last; use v
else: c = u # Otherwise, u is a candidate
for v in range(n): # For everyone else...
if c == v: continue # Same person? Skip.
if G[c][v]: break # Candidate knows other
if not G[v][c]: break # Other doesn't know candidate
else:
return c # No breaks? Celebrity!
return None # Couldn't find anyone
def test_naive_topsort():
"""
>>> n = 6
>>> from random import sample, randrange, shuffle
>>> from random import seed; seed(2365)
>>> G = dict()
>>> seq = list(range(n)) # Py 3 range objects aren't sequences
>>> shuffle(seq)
>>> rest = set(seq)
>>> for x in seq[:-1]:
... rest.remove(x)
... m = randrange(1,len(rest)+1)
... G[x] = set(sample(rest, m))
...
>>> G[seq[-1]] = set()
>>> sorted = naive_topsort(G)
>>> rest = set(sorted)
>>> for u in sorted:
... rest.remove(u)
... assert G[u] <= rest
...
>>> G = {'a': set('bf'), 'b': set('cdf'),
... 'c': set('d'), 'd': set('ef'), 'e': set('f'), 'f': set()}
>>> naive_topsort(G)
['a', 'b', 'c', 'd', 'e', 'f']
"""
def naive_topsort(G, S=None):
if S is None: S = set(G) # Default: All nodes
if len(S) == 1: return list(S) # Base case, single node
v = S.pop() # Reduction: Remove a node
seq = naive_topsort(G, S) # Recursion (assumption), n-1
min_i = 0
for i, u in enumerate(seq):
if v in G[u]: min_i = i+1 # After all dependencies
seq.insert(min_i, v)
return seq
def test_topsort():
"""
>>> n = 6
>>> from random import sample, randrange, shuffle
>>> from random import seed; seed(2365)
>>> G = dict()
>>> seq = list(range(n)) # Py 3 range objects aren't sequences
>>> shuffle(seq)
>>> rest = set(seq)
>>> for x in seq[:-1]:
... rest.remove(x)
... m = randrange(1,len(rest)+1)
... G[x] = set(sample(rest, m))
...
>>> G[seq[-1]] = set()
>>> sorted = topsort(G)
>>> rest = set(sorted)
>>> for u in sorted:
... rest.remove(u)
... assert G[u] <= rest
...
>>> G = {'a': set('bf'), 'b': set('cdf'),
... 'c': set('d'), 'd': set('ef'), 'e': set('f'), 'f': set()}
>>> topsort(G)
['a', 'b', 'c', 'd', 'e', 'f']
"""
def topsort(G):
count = dict((u, 0) for u in G) # The in-degree for each node
for u in G:
for v in G[u]:
count[v] += 1 # Count every in-edge
Q = [u for u in G if count[u] == 0] # Valid initial nodes
S = [] # The result
while Q: # While we have start nodes...
u = Q.pop() # Pick one
S.append(u) # Use it as first of the rest
for v in G[u]:
count[v] -= 1 # "Uncount" its out-edges
if count[v] == 0: # New valid start nodes?
Q.append(v) # Deal with them next
return S
def test_relax():
"""
>>> n = 100
>>> from random import *
>>> B = dict((i, dict((j, randrange(1000)) for j in range(n)))
... for i in range(n))
>>> for i in range(n):
... B[i][i] = 0
>>> A = dict((i, randrange(1000)) for i in range(n))
>>> C = {}
>>> N = 100
>>> for v in range(n):
... C[v] = float('inf')
>>> for i in range(N):
... u, v = randrange(n), randrange(n)
... C[v] = min(C[v], A[u] + B[u][v]) # Relax
"""