-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathbayes_lin_regr_koop.m
185 lines (151 loc) · 4.59 KB
/
bayes_lin_regr_koop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
function bayes_lin_regr_koop()
% Conjugate bayesian analysis of linear regression
% from chapter 3 of Gary Koop, "Bayesian econometrics".
% Based on his code.
load hprice.txt; n=size(hprice,1); y=hprice(:,1); x=hprice(:,2:5); x=[ones(n,1) x]; k=5;
% Hyper-parameters
b0 = [0, 10, 5000, 10000, 10000]';
V0 = diag([2.4 6e-7 0.15 0.6 0.6]);
s02 = 1/4e-8; % sigma_0^{-2}
v0 = 5;
[bN, VN, sN2, vN, bsd, bhpdi95, probpos, lmarglik] = ...
computePost(b0, V0, s02, v0, x, y);
probposun = probpos; % probability positive unrestricted model
lmargun = lmarglik; % log marginal likelihood unrestricted model
xstar = [1 5000 2 2 1];
[ystarm, ystarsd] = predict(xstar, bN, VN, sN2, vN);
fprintf('predicted price %5.3f +- %5.3f\n', ystarm, ystarsd);
fprintf('posterior\n');
for i=1:k
fprintf('%3d %10.2f +- %10.2f (in %10.1f to %10.1f wp 0.95)\n', ...
i, bN(i), bsd(i), bhpdi95(i,1), bhpdi95(i,2));
end
% Repeat analysis with uninformative prior
v0=0;
V0 = zeros(k);
[bN, VN, sN2, vN, bsd, bhpdi95, probpos] = ...
computePost(b0, V0, s02, v0, x, y);
fprintf('with uninformative prior\n');
[ystarm, ystarsd] = predict(xstar, bN, VN, sN2, vN);
fprintf('predicted price %5.3f +- %5.3f\n', ystarm, ystarsd);
fprintf('posterior\n');
for i=1:k
fprintf('%3d %10.2f +- %10.2f (in %10.1f to %10.1f wp 0.95)\n', ...
i, bN(i), bsd(i), bhpdi95(i,1), bhpdi95(i,2));
end
% Model selection
% Go back to informative prior
V0 = diag([2.4 6e-7 0.15 0.6 0.6]);
v0 = 5;
for i=1:k
% consider omitting component i
incl = [1:i-1 i+1:k]; % dimensions to include
[bN, VN, sN2, vN, bsd, bhpdi95, probpos, lmarglik] = ...
computePost(b0(incl), V0(incl,incl), s02, v0, x(:,incl), y);
postodds(i)=exp(lmarglik-lmargun);
end
modelprob = postodds./(1+postodds);
fprintf('model assesment\n');
for i=1:k
fprintf('%d: p(w_j>0|D)=%5.3f, P(w_j=0|D)/P(w_j != 0|D)=%5.3f, P(w_j=0|D)=%5.3f\n', ...
i, probposun(i), postodds(i), modelprob(i));
end
% Monte carlo integration
samples = [10 100 1000 10000];
%samples = [1000];
clear bs bsd nse
for i=1:length(samples)
S = samples(i);
[bs(:,i), bsd(:,i), nse(:,i)] = computePostMC(b0, V0, s02, v0, x, y, S, @extractMarginal);
end
fprintf('MC\n');
marg = [1 2];
for mi=1:length(marg)
m=marg(mi);
for i=1:length(samples)
S = samples(i);
fprintf('S=%6d, E[b(%1d)]=%10.5f +- %10.5f, nse = %10.5f\n', ...
S, m, bs(mi, i), bsd(mi, i), nse(mi, i));
end
end
%%%%%%%%%%
function m = extractMarginal(b)
m = b(1:2);
%%%%%%%%%%
function [fmean, fsd, nse] = computePostMC(b0, V0, s02, v0, x, y, nsamples, fn);
% Compute E[fn(b)], sd[fn(b)] using nsamples of monte carlo
[b1, capv1, s12, v1] = computePost(b0, V0, s02, v0, x, y);
k = size(x,2);
vscale = s12*capv1;
vchol=chol(vscale);
vchol=vchol';
fmean = zeros(size(feval(fn, b1)));
fsq = zeros(size(fmean));
for i=1:nsamples
bsamp = b1 + vchol*trnd(v1, k, 1); % draw from T(b1, vscale, v1)
f = feval(fn, bsamp);
fmean = fmean + f;
fsq = fsq + f.^2;
end
fmean = fmean / nsamples;
fsq = fsq / nsamples;
fvar = fsq - fmean.^2;
fsd = sqrt(fvar);
nse = fsd ./ sqrt(nsamples); % numerical standard error
%%%%%%%%%%
function [b1, capv1, s12, v1, bsd, bhpdi95, probpos, lmarglik] = ...
computePost(b0, V0, s02, v0, x, y);
% bsd(i) = std dev of P( beta(i) | D)
% bhpdi(i,1:2) = 95% high prob density interval
% probpos(i) = P(beta(i) > 0 | D)
[n k] = size(x);
capv0 = V0;
if det(V0)>0
capv0inv = inv(V0);
else
capv0inv = zeros(k);
end
bols = inv(x'*x)*x'*y; %Ordinary least squares quantities
s2 = (y-x*bols)'*(y-x*bols)/(n-k);
bolscov = s2*inv(x'*x);
bolssd=zeros(k,1);
for i = 1:k
bolssd(i,1)=sqrt(bolscov(i,i));
end
v=n-k;
xsquare=x'*x;
v1=v0+n;
capv1inv = capv0inv+ xsquare;
capv1=inv(capv1inv);
b1 = capv1*(capv0inv*b0 + xsquare*bols);
if det(capv0inv)>0
v1s12 = v0*s02 + v*s2 + (bols-b0)'*inv(capv0 + inv(xsquare))*(bols-b0);
else
v1s12 = v0*s02 + v*s2;
end
s12 = v1s12/v1;
bcov = capv1*v1s12/(v1-2);
bsd=zeros(k,1);
for i = 1:k
bsd(i,1)=sqrt(bcov(i,i));
end
probpos=zeros(k,1);
bhpdi95=zeros(k,2);
invcdf95=tinv(.975,v1);
for i = 1:k
tnorm = -b1(i,1)/sqrt(s12*capv1(i,i));
probpos(i,1) = 1 - tcdf(tnorm,v1);
bhpdi95(i,1) = b1(i,1)-invcdf95*sqrt(s12*capv1(i,i));
bhpdi95(i,2) = b1(i,1)+invcdf95*sqrt(s12*capv1(i,i));
end
%log of marginal likelihood for the model if prior is informative
if det(capv0inv)>0;
intcon=gammaln(.5*v1) + .5*v0*log(v0*s02)- gammaln(.5*v0) -.5*n*log(pi);
lmarglik=intcon + .5*log(det(capv1)/det(capv0)) - .5*v1*log(v1s12);
end
%%%%%%%%
function [ystarm, ystarsd] = predict(xstar, b1, capv1, s12, v1)
ystarm = xstar*b1;
ystarcapv = (1+ xstar*capv1*xstar')*s12;
ystarv = ystarcapv*v1/(v1-2);
ystarsd=sqrt(ystarv);