diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION index 7804d18..ad81161 100644 --- a/CRAN-SUBMISSION +++ b/CRAN-SUBMISSION @@ -1,3 +1,3 @@ -Version: 1.0.2 -Date: 2022-10-18 17:35:41 UTC -SHA: 9a1335f085fa305e0958c3fef093ad66cb00ac0e +Version: 1.0.4 +Date: 2024-06-07 19:39:45 UTC +SHA: 6c33f8845695356a2d481b2a92b5dc89649bf9e3 diff --git a/DESCRIPTION b/DESCRIPTION index 12d2dd5..c8f5a92 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: modeltime.ensemble Type: Package Title: Ensemble Algorithms for Time Series Forecasting with Modeltime -Version: 1.0.3.9000 +Version: 1.0.4 Authors@R: c( person("Matt", "Dancho", email = "mdancho@business-science.io", role = c("aut", "cre")), person("Business Science", role = "cph") @@ -9,8 +9,7 @@ Authors@R: c( Description: A 'modeltime' extension that implements time series ensemble forecasting methods including model averaging, weighted averaging, and stacking. These techniques are popular methods - to improve forecast accuracy and stability. Refer to papers such as - "Machine-Learning Models for Sales Time Series Forecasting" Pavlyshenko, B.M. (2019) . + to improve forecast accuracy and stability. URL: https://business-science.github.io/modeltime.ensemble/, https://github.com/business-science/modeltime.ensemble BugReports: https://github.com/business-science/modeltime.ensemble/issues License: MIT + file LICENSE @@ -24,7 +23,6 @@ Imports: rsample, yardstick, workflows (>= 0.2.1), - parsnip (>= 0.1.6), recipes (>= 0.1.15), timetk (>= 2.5.0), tibble, @@ -40,10 +38,10 @@ Imports: parallel, doParallel, foreach, + glmnet Suggests: gt, dials, - glmnet, utils, earth, testthat, diff --git a/NAMESPACE b/NAMESPACE index 95eb3f4..8a4664a 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -38,6 +38,7 @@ export(ensemble_weighted) export(expr) export(sym) export(syms) +import(glmnet) import(modeltime) import(modeltime.resample) importFrom(magrittr,"%>%") diff --git a/NEWS.md b/NEWS.md index 72a0f82..3791811 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,5 +1,7 @@ # modeltime.ensemble (development version) +# modeltime.ensemble 1.0.4 + - #31 Fixes issue with metric argument not being specified: ```r diff --git a/R/00_imports.R b/R/00_imports.R index 7c45bd5..29943ed 100644 --- a/R/00_imports.R +++ b/R/00_imports.R @@ -1,5 +1,6 @@ #' @import modeltime #' @import modeltime.resample +#' @import glmnet #' @importFrom modeltime mdl_time_forecast modeltime_calibrate modeltime_refit mdl_time_refit get_model_description default_forecast_accuracy_metric_set summarize_accuracy_metrics #' @importFrom yardstick rmse rsq #' @importFrom tune control_grid diff --git a/R/ensemble_model_spec.R b/R/ensemble_model_spec.R index 6ab221b..41989b8 100644 --- a/R/ensemble_model_spec.R +++ b/R/ensemble_model_spec.R @@ -85,6 +85,7 @@ #' library(modeltime.ensemble) #' library(dplyr) #' library(timetk) +#' library(glmnet) #' #' # Step 1: Make resample predictions for submodels #' resamples_tscv <- training(m750_splits) %>% diff --git a/man/ensemble_model_spec.Rd b/man/ensemble_model_spec.Rd index 5b1556c..9107fb8 100644 --- a/man/ensemble_model_spec.Rd +++ b/man/ensemble_model_spec.Rd @@ -105,6 +105,7 @@ library(modeltime) library(modeltime.ensemble) library(dplyr) library(timetk) +library(glmnet) # Step 1: Make resample predictions for submodels resamples_tscv <- training(m750_splits) \%>\%