-
Notifications
You must be signed in to change notification settings - Fork 9
/
README.Rmd
155 lines (106 loc) · 6.18 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
message = F,
warning = F,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "90%",
fig.align = "center"
)
```
# modeltime.gluonts <a href="https://business-science.github.io/modeltime.gluonts/"><img src="man/figures/logo.png" align="right" height="138" alt="modeltime.gluonts website" /></a>
<!-- badges: start -->
[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/modeltime.gluonts)](https://cran.r-project.org/package=modeltime)
![](http://cranlogs.r-pkg.org/badges/modeltime.gluonts?color=brightgreen)
![](http://cranlogs.r-pkg.org/badges/grand-total/modeltime.gluonts?color=brightgreen)
[![Codecov test coverage](https://codecov.io/gh/business-science/modeltime.gluonts/branch/master/graph/badge.svg)](https://codecov.io/gh/business-science/modeltime.gluonts?branch=master)
[![R-CMD-check](https://github.com/business-science/modeltime.gluonts/workflows/R-CMD-check/badge.svg)](https://github.com/business-science/modeltime.gluonts/actions)
<!-- badges: end -->
> GluonTS Deep Learning in R.
## GluonTS Deep Learning in R
Modeltime GluonTS integrates the __Python GluonTS Deep Learning Library__, making it easy to develop forecasts using Deep Learning for those that are comfortable with the [Modeltime Forecasting Workflow](https://business-science.github.io/modeltime/).
```{r, echo=F}
knitr::include_graphics("man/figures/m4_hourly_forecast.jpg")
```
## Installation Requirements
__Important: This package is being maintained on GitHub (not CRAN). Please install the GitHub version, which is updated with the latest features:__
```
# Install GitHub Version
remotes::install_github("business-science/modeltime.gluonts")
# Install Python Dependencies
modeltime.gluonts::install_gluonts()
```
For more detailed installation instructions and troubleshooting guidance, visit our [Installation Guide](https://business-science.github.io/modeltime.gluonts/articles/managing-envs.html).
## Make Your First DeepAR Model
Make your first `deep_ar()` model, which connects to the GluonTS `DeepAREstimator()`. For a more detailed walkthough, visit our [Getting Started Guide](https://business-science.github.io/modeltime.gluonts/articles/getting-started.html).
```{r example, eval = F}
library(modeltime.gluonts)
library(tidymodels)
library(tidyverse)
# Fit a GluonTS DeepAR Model
model_fit_deepar <- deep_ar(
id = "id",
freq = "M",
prediction_length = 24,
lookback_length = 48,
epochs = 5
) %>%
set_engine("gluonts_deepar") %>%
fit(value ~ ., training(m750_splits))
# Forecast with 95% Confidence Interval
modeltime_table(
model_fit_deepar
) %>%
modeltime_calibrate(new_data = testing(m750_splits)) %>%
modeltime_forecast(
new_data = testing(m750_splits),
actual_data = m750,
conf_interval = 0.95
) %>%
plot_modeltime_forecast(.interactive = FALSE)
```
```{r, echo = F}
knitr::include_graphics("man/figures/deepar_example_1.png")
```
## Meet the modeltime ecosystem
> Learn a growing ecosystem of forecasting packages
```{r, echo=F, out.width='100%', fig.align='center', fig.cap="The modeltime ecosystem is growing"}
knitr::include_graphics("man/figures/modeltime_ecosystem.jpg")
```
Modeltime is part of a __growing ecosystem__ of Modeltime forecasting packages.
- [Modeltime (Machine Learning)](https://business-science.github.io/modeltime/)
- [Modeltime H2O (AutoML)](https://business-science.github.io/modeltime.h2o/)
- [Modeltime GluonTS (Deep Learning)](https://business-science.github.io/modeltime.gluonts/)
- [Modeltime Ensemble (Blending Forecasts)](https://business-science.github.io/modeltime.ensemble/)
- [Modeltime Resample (Backtesting)](https://business-science.github.io/modeltime.resample/)
- [Timetk (Feature Engineering, Data Wrangling, Time Series Visualization)](https://business-science.github.io/timetk/)
## Take the High-Performance Forecasting Course
> Become the forecasting expert for your organization
<a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting/" target="_blank"><img src="https://www.filepicker.io/api/file/bKyqVAi5Qi64sS05QYLk" alt="High-Performance Time Series Forecasting Course" width="100%" style="box-shadow: 0 0 5px 2px rgba(0, 0, 0, .5);"/></a>
[_High-Performance Time Series Course_](https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting/)
### Time Series is Changing
Time series is changing. __Businesses now need 10,000+ time series forecasts every day.__ This is what I call a _High-Performance Time Series Forecasting System (HPTSF)_ - Accurate, Robust, and Scalable Forecasting.
__High-Performance Forecasting Systems will save companies by improving accuracy and scalability.__ Imagine what will happen to your career if you can provide your organization a "High-Performance Time Series Forecasting System" (HPTSF System).
### How to Learn High-Performance Time Series Forecasting
I teach how to build a HPTFS System in my [__High-Performance Time Series Forecasting Course__](https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting). You will learn:
- __Time Series Machine Learning__ (cutting-edge) with `Modeltime` - 30+ Models (Prophet, ARIMA, XGBoost, Random Forest, & many more)
- __Deep Learning__ with `GluonTS` (Competition Winners)
- __Time Series Preprocessing__, Noise Reduction, & Anomaly Detection
- __Feature engineering__ using lagged variables & external regressors
- __Hyperparameter Tuning__
- __Time series cross-validation__
- __Ensembling__ Multiple Machine Learning & Univariate Modeling Techniques (Competition Winner)
- __Scalable Forecasting__ - Forecast 1000+ time series in parallel
- and more.
<p class="text-center" style="font-size:24px;">
Become the Time Series Expert for your organization.
</p>
<br>
<p class="text-center" style="font-size:30px;">
<a href="https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting">Take the High-Performance Time Series Forecasting Course</a>
</p>