forked from bernhardkaplan/bcpnn-mt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_abstract_input_files.py
executable file
·37 lines (28 loc) · 1.08 KB
/
merge_abstract_input_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import numpy as np
import simulation_parameters
PS = simulation_parameters.parameter_storage()
params = PS.params
n_cells = params['n_exc']
n_iterations = params['n_theta'] * params['n_speeds'] * params['n_cycles'] * params['n_stim_per_direction']
#n_time_steps = params['t_sim'] / params['dt_rate']
#for iteration in xrange(n_iterations):
# data = np.zeros((n_time_steps, n_cells))
# for cell in xrange(n_cells):
# fn = 'Abstract/TrainingInput_%d/abstract_input_%d.dat' % (iteration, cell)
# d = np.loadtxt(fn)
# data[:, cell] = d
# fn_out = 'Abstract/Parameters/input_%d.dat' % iteration
# np.savetxt(fn_out, data)
cmd = 'cat '
for i in xrange(n_iterations):
cmd += ' %sANNActivity/input_%d.dat' % (params['folder_name'], i)
fn_out = '%sParameters/all_inputs_scaled.dat' % (params['folder_name'])
cmd += ' > %s' % (fn_out)
print cmd
os.system(cmd)
d = np.loadtxt(fn_out)
d_trans = d.transpose()
fn_out = '%sParameters/all_inputs_scaled_transposed.dat' % (params['folder_name'])
print 'Saving transposed input to:', fn_out
np.savetxt(fn_out, d_trans)