-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
506 lines (465 loc) · 22.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import argparse
import json
import logging
import os
import random
import collections
import math
import numpy as np
import torch
from torch.utils.data import DataLoader
from dataset import TestDataset
from model import KGReasoning
import time
import pickle
from collections import defaultdict
from tqdm import tqdm
from util import flatten_query, list2tuple, parse_time, set_global_seed, eval_tuple
from torchmetrics import SpearmanCorrCoef
query_name_dict = {('e', ('r',)): '1p',
('e', ('r', 'r')): '2p',
('e', ('r', 'r', 'r')): '3p',
('e', ('r', 'r', 'r', 'r')): '4p',
('e', ('r', 'r', 'r', 'r', 'r')): '5p',
(('e', ('r',)), ('e', ('r',))): '2i',
(('e', ('r',)), ('e', ('r',)), ('e', ('r',))): '3i',
((('e', ('r',)), ('e', ('r',))), ('r',)): 'ip',
(('e', ('r', 'r')), ('e', ('r',))): 'pi',
(('e', ('r',)), ('e', ('r', 'n'))): '2in',
(('e', ('r',)), ('e', ('r',)), ('e', ('r', 'n'))): '3in',
((('e', ('r',)), ('e', ('r', 'n'))), ('r',)): 'inp',
(('e', ('r', 'r')), ('e', ('r', 'n'))): 'pin',
(('e', ('r', 'r', 'n')), ('e', ('r',))): 'pni',
(('e', ('r',)), ('e', ('r',)), ('u',)): '2u-DNF',
((('e', ('r',)), ('e', ('r',)), ('u',)), ('r',)): 'up-DNF',
((('e', ('r', 'n')), ('e', ('r', 'n'))), ('n',)): '2u-DM',
((('e', ('r', 'n')), ('e', ('r', 'n'))), ('n', 'r')): 'up-DM',
}
name_answer_dict = {'1p': ['e', ['r',], 'e'],
'2p': ['e', ['r', 'e', 'r'], 'e'],
'3p': ['e', ['r', 'e', 'r', 'e', 'r'], 'e'],
'2i': [['e', ['r',], 'e'], ['e', ['r',], 'e'], 'e'],
'3i': [['e', ['r',], 'e'], ['e', ['r',], 'e'], ['e', ['r',], 'e'], 'e'],
'ip': [[['e', ['r',], 'e'], ['e', ['r',], 'e'], 'e'], ['r',], 'e'],
'pi': [['e', ['r', 'e', 'r'], 'e'], ['e', ['r',], 'e'], 'e'],
'2in': [['e', ['r',], 'e'], ['e', ['r', 'n'], 'e'], 'e'],
'3in': [['e', ['r',], 'e'], ['e', ['r',], 'e'], ['e', ['r', 'n'], 'e'], 'e'],
'inp': [[['e', ['r',], 'e'], ['e', ['r', 'n'], 'e'], 'e'], ['r',], 'e'],
'pin': [['e', ['r', 'e', 'r'], 'e'], ['e', ['r', 'n'], 'e'], 'e'],
'pni': [['e', ['r', 'e', 'r', 'n'], 'e'], ['e', ['r',], 'e'], 'e'],
'2u-DNF': [['e', ['r',], 'e'], ['e', ['r',], 'e'], ['u',], 'e'],
'up-DNF': [[['e', ['r',], 'e'], ['e', ['r',], 'e'], ['u',], 'e'], ['r',], 'e'],
}
name_query_dict = {value: key for key, value in query_name_dict.items()}
all_tasks = list(name_query_dict.keys()) # ['1p', '2p', '3p', '2i', '3i', 'ip', 'pi', '2in', '3in', 'inp', 'pin', 'pni', '2u-DNF', '2u-DM', 'up-DNF', 'up-DM']
espace = 9
rspace = 11
mapping = dict()
def parse_args(args=None):
parser = argparse.ArgumentParser(
description='Training and Testing Knowledge Graph Embedding Models',
usage='train.py [<args>] [-h | --help]'
)
parser.add_argument('--do_valid', action='store_true', help="do valid")
parser.add_argument('--do_test', action='store_true', help="do test")
parser.add_argument('--do_cp', action='store_true', help="do cardinality prediction")
parser.add_argument('--path', action='store_true', help="do interpretation study")
parser.add_argument('--train', action='store_true', help="do test")
parser.add_argument('--data_path', type=str, default=None, help="KG data path")
parser.add_argument('--kbc_path', type=str, default=None, help="kbc model path")
parser.add_argument('--test_batch_size', default=1, type=int, help='valid/test batch size')
parser.add_argument('-cpu', '--cpu_num', default=10, type=int, help="used to speed up torch.dataloader")
parser.add_argument('--nentity', type=int, default=0, help='DO NOT MANUALLY SET')
parser.add_argument('--nrelation', type=int, default=0, help='DO NOT MANUALLY SET')
parser.add_argument('--fraction', type=int, default=1, help='fraction the entity to save gpu memory usage')
parser.add_argument('--thrshd', type=float, default=0.001, help='thrshd for neural adjacency matrix')
parser.add_argument('--neg_scale', type=int, default=1, help='scaling neural adjacency matrix for negation')
parser.add_argument('--tasks', default='1p.2p.3p.2i.3i.ip.pi.2in.3in.inp.pin.pni.2u.up', type=str, help="tasks connected by dot, refer to the BetaE paper for detailed meaning and structure of each task")
parser.add_argument('--seed', default=12345, type=int, help="random seed")
parser.add_argument('-evu', '--evaluate_union', default="DNF", type=str, choices=['DNF', 'DM'], help='the way to evaluate union queries, transform it to disjunctive normal form (DNF) or use the De Morgan\'s laws (DM)')
return parser.parse_args(args)
def log_metrics(mode, metrics, writer):
'''
Print the evaluation logs
'''
for metric in metrics:
logging.info('%s %s: %f' % (mode, metric, metrics[metric]))
print('%s %s: %f' % (mode, metric, metrics[metric]))
writer.write('%s %s: %f\n' % (mode, metric, metrics[metric]))
def read_triples(filenames, nrelation, datapath):
adj_list = [[] for i in range(nrelation)]
edges_all = set()
edges_vt = set()
for filename in filenames:
with open(filename) as f:
for line in f.readlines():
h, r, t = line.strip().split('\t')
adj_list[int(r)].append((int(h), int(t)))
for filename in ['valid.txt', 'test.txt']:
with open(os.path.join(datapath, filename)) as f:
for line in f.readlines():
h, r, t = line.strip().split('\t')
edges_all.add((int(h), int(r), int(t)))
edges_vt.add((int(h), int(r), int(t)))
with open(os.path.join(datapath, "train.txt")) as f:
for line in f.readlines():
h, r, t = line.strip().split('\t')
edges_all.add((int(h), int(r), int(t)))
return adj_list, edges_all, edges_vt
def verify_chain(chain, chain_structure, edges_y, edges_p): # (e, r, e, ..., e)
'''
verify the validity of the reasoning path (chain)
'''
global mapping
head = chain[0]
rel = 0
neg = False
judge = True
edge_class = []
for ele, ans_ele in zip(chain_structure[1:], chain[1:]):
if ele == 'e':
if neg:
edge_judge = ((head, rel, ans_ele) not in edges_y)
judge = judge & edge_judge
if edge_judge: # not in train/val/test
edge_class.append('y')
elif (head, rel, ans_ele) in edges_p: # in val/test
edge_class.append('p')
else: # in train
edge_class.append('n')
neg = False
else:
edge_judge = ((head, rel, ans_ele) in edges_y)
if edge_judge:
if (head, rel, ans_ele) in edges_p: # in val/test
edge_class.append('p')
else: # in train
edge_class.append('y')
else: # not in train/val/test
edge_class.append('n')
judge = judge & edge_judge
head = ans_ele
elif ele == 'r':
rel = ans_ele
elif ele == 'n':
neg = True
chain_structure = chain_structure[1:-1]
chain = chain[1:-1]
out = ''
neg = False
edge_class = edge_class[::-1]
idx = 0
for ele, ans_ele in zip(chain_structure[::-1], chain[::-1]):
if ele == 'e':
out += '{:<9}'.format(str(ans_ele))
mapping[str(ans_ele)] = id2ent[ans_ele]
elif ele == 'r':
if neg:
out += '{:<11}'.format(edge_class[idx]+'<-r'+str(ans_ele)+'-X')
neg = False
else:
out += '{:<11}'.format(edge_class[idx]+'<-r'+str(ans_ele)+'-')
mapping['r'+str(ans_ele)] = id2rel[ans_ele]
idx += 1
elif ele == 'n':
neg = True
return judge, out
def verify(ans_structure, ans, edges_y, edges_p, offset=0):
'''
verify the validity of the reasoning path
'''
global mapping
if ans_structure[1][0] == 'r': # [[...], ['r', ...], 'e']
chain_stucture = ['e']+ans_structure[1]+['e']
if ans_structure[0] == 'e': # ['e', ['r', ...], 'e']
chain = [ans[0]]+ans[1]+[ans[2]]
judge, out = verify_chain(chain, chain_stucture, edges_y, edges_p)
out = '{:<9}'.format(str(ans[2])) + out + '{:<9}'.format(str(ans[0]))
mapping[str(ans[2])] = id2ent[ans[2]]
mapping[str(ans[0])] = id2ent[ans[0]]
return judge, out
else:
chain = [ans[0][-1]]+ans[1]+[ans[2]]
judge1, out1 = verify_chain(chain, chain_stucture, edges_y, edges_p)
for ele in ans_structure[1] + [ans_structure[2]]:
if ele == 'r':
offset += 11
elif ele == 'e':
offset += 9
judge2, out2 = verify(ans_structure[0], ans[0], edges_y, edges_p, offset)
judge = judge1 & judge2
out = '{:<9}'.format(str(ans[2])) + out1 + out2
mapping[str(ans[2])] = id2ent[ans[2]]
return judge, out
else: # [[...], [...], 'e']
if ans_structure[-2][0] == 'u':
union = True
out = '{:<9}'.format(str(ans[-1])+'(u)')
ans_structure, ans = ans_structure[:-1], ans[:-1]
else:
union = False
out = '{:<9}'.format(str(ans[-1])+'(i)')
mapping[str(ans[-1])] = id2ent[ans[-1]]
judge = not union
offset += 9
for ele, ans_ele in zip(ans_structure[:-1], ans[:-1]):
judge_ele, out_ele = verify(ele, ans_ele, edges_y, edges_p, offset)
if union:
judge = judge | judge_ele
else:
judge = judge & judge_ele
out = out + out_ele + '\n' + ' '*offset
return judge, out
def get_cp_thrshd(model, tp_answers, fn_answers, args, dataloader, query_name_dict, device):
'''
get the best threshold for cardinality prediction on valid set
'''
probs = defaultdict(list)
cards = defaultdict(list)
best_thrshds = dict()
for queries, queries_unflatten, query_structures in tqdm(dataloader):
queries = torch.LongTensor(queries).to(device)
embedding, _, _ = model.embed_query(queries, query_structures[0], 0)
embedding = embedding.squeeze()
hard_answer = tp_answers[queries_unflatten[0]]
easy_answer = fn_answers[queries_unflatten[0]]
num_hard = len(hard_answer)
num_easy = len(easy_answer)
probs[query_structures[0]].append(embedding.to('cpu'))
cards[query_structures[0]].append(torch.tensor([num_hard+num_easy]))
for query_structure in probs:
prob = torch.stack(probs[query_structure])#.to(device)
card = torch.stack(cards[query_structure]).squeeze().to(torch.float)#.to(device)
ape = torch.zeros_like(card).to(torch.float).to(device)
best_thrshd = 0
best_mape = 10000
nquery = prob.size(0)
fraction = 10
dim = nquery // fraction
rest = nquery - fraction * dim
for i in tqdm(range(10)):
thrshd = i / 10
for j in range(fraction):
s = j * dim
t = (j+1) * dim
if j == fraction - 1:
t += rest
fractional_prob = prob[s:t, :].to(device)
fractional_card = card[s:t].to(device)
pre_card = (fractional_prob >= thrshd).to(torch.float).sum(-1)
ape[s:t] = torch.abs(fractional_card - pre_card) / fractional_card
mape = ape.mean()
if mape < best_mape:
best_mape = mape
best_thrshd = thrshd
best_thrshds[query_structure] = best_thrshd
print(best_thrshds)
return best_thrshds
def evaluate(model, tp_answers, fn_answers, args, dataloader, query_name_dict, device, writer, edges_y, edges_p, cp_thrshd):
'''
Evaluate queries in dataloader
'''
global mapping
mode = "Test"
average_metrics = defaultdict(float)
all_metrics = defaultdict(float)
logs = defaultdict(list)
rates = defaultdict(list)
probs = defaultdict(list)
cards = defaultdict(list)
for queries, queries_unflatten, query_structures in tqdm(dataloader):
queries = torch.LongTensor(queries).to(device)
embedding, _, exec_query = model.embed_query(queries, query_structures[0], 0)
embedding = embedding.squeeze()
order = torch.argsort(embedding, dim=-1, descending=True)
ranking = torch.argsort(order)
# eval
hard_answer = tp_answers[queries_unflatten[0]]
easy_answer = fn_answers[queries_unflatten[0]]
num_hard = len(hard_answer)
num_easy = len(easy_answer)
cur_ranking = ranking[list(easy_answer) + list(hard_answer)]
all_path, h1_path, h3_path, h10_path = 0, 0, 0, 0
num_h1, num_h3, num_h10 = 0, 0, 0
if args.path:
for root in list(hard_answer):
rank = ranking[root]
rank -= ((cur_ranking < rank).sum()-1)
ans, _ = model.find_ans(exec_query, query_structures[0], root)
mapping = dict()
judge, out = verify(name_answer_dict[query_name_dict[query_structures[0]]], ans, edges_y, edges_p)
if judge:
all_path += 1
if rank <= 1:
num_h1 += 1
if judge:
h1_path += 1
if rank <= 3:
num_h3 += 1
if judge:
h3_path += 1
if rank <= 10:
num_h10 += 1
if judge:
h10_path += 1
print(judge, rank.item())
print(out, mapping)
if args.do_cp:
probs[query_structures[0]].append(embedding.to('cpu'))
cards[query_structures[0]].append(torch.tensor([num_hard+num_easy]))
cur_ranking, indices = torch.sort(cur_ranking)
masks_hard = indices >= num_easy
masks_easy = indices < num_easy
answer_list = torch.arange(num_hard + num_easy).to(torch.float).to(device)
cur_ranking = cur_ranking - answer_list + 1 # filtered setting
cur_ranking_hard = cur_ranking[masks_hard] # take indices that belong to the hard answers
cur_ranking_easy = cur_ranking[masks_easy] # take indices that belong to the easy answers
mrr_hard = torch.mean(1./cur_ranking_hard).item()
h1_hard = torch.mean((cur_ranking_hard <= 1).to(torch.float)).item()
h3_hard = torch.mean((cur_ranking_hard <= 3).to(torch.float)).item()
h10_hard = torch.mean((cur_ranking_hard <= 10).to(torch.float)).item()
mrr_easy = torch.mean(1./cur_ranking_easy).item()
h1_easy = torch.mean((cur_ranking_easy <= 1).to(torch.float)).item()
h3_easy = torch.mean((cur_ranking_easy <= 3).to(torch.float)).item()
h10_easy = torch.mean((cur_ranking_easy <= 10).to(torch.float)).item()
if num_easy == 0:
mrr_easy, h1_easy, h3_easy, h10_easy = 1, 1, 1, 1
logs[query_structures[0]].append({
'MRR_hard': mrr_hard,
'HITS1_hard': h1_hard,
'HITS3_hard': h3_hard,
'HITS10_hard': h10_hard,
'num_hard_answer': num_hard,
'MRR_easy': mrr_easy,
'HITS1_easy': h1_easy,
'HITS3_easy': h3_easy,
'HITS10_easy': h10_easy,
'num_easy_answer': num_easy,
})
if args.path:
if num_hard > 0:
rates[query_name_dict[query_structures[0]]+" all path interpretability"].append(all_path / num_hard)
if num_h1 > 0:
rates[query_name_dict[query_structures[0]]+" HITS1 path interpretability"].append(h1_path / num_h1)
if num_h3 > 0:
rates[query_name_dict[query_structures[0]]+" HITS3 path interpretability"].append(h3_path / num_h3)
if num_h10 > 0:
rates[query_name_dict[query_structures[0]]+" HITS10 path interpretability"].append(h10_path / num_h10)
if args.path:
rate_metric = defaultdict(float)
for query_structure in rates:
rate_metric[query_structure] = sum(rates[query_structure])/len(rates[query_structure])
log_metrics('Interpretability', rate_metric, writer)
metrics = collections.defaultdict(lambda: collections.defaultdict(int))
for query_structure in logs:
for metric in logs[query_structure][0].keys():
if metric in ['num_hard_answer', 'num_easy_answer']:
continue
metrics[query_structure][metric] = sum([log[metric] for log in logs[query_structure]])/len(logs[query_structure])
metrics[query_structure]['num_queries'] = len(logs[query_structure])
num_query_structures = 0
num_queries = 0
for query_structure in metrics:
log_metrics(mode+" "+query_name_dict[query_structure], metrics[query_structure], writer)
for metric in metrics[query_structure]:
all_metrics["_".join([query_name_dict[query_structure], metric])] = metrics[query_structure][metric]
if metric != 'num_queries':
average_metrics[metric] += metrics[query_structure][metric]
num_queries += metrics[query_structure]['num_queries']
num_query_structures += 1
for metric in average_metrics:
average_metrics[metric] /= num_query_structures
all_metrics["_".join(["average", metric])] = average_metrics[metric]
log_metrics('%s average'%mode, average_metrics, writer)
if args.do_cp:
card_metrics = defaultdict(float)
spearman = SpearmanCorrCoef()
for query_structure in probs:
prob = torch.stack(probs[query_structure])
card = torch.stack(cards[query_structure]).squeeze().to(torch.float)
pre_card = (prob >= cp_thrshd[query_structure]).to(torch.float).sum(-1)
mape = (torch.abs(card - pre_card) / card).mean()
spm = spearman(pre_card, card)
card_metrics[query_name_dict[query_structure]+" MAPE"] = mape
card_metrics[query_name_dict[query_structure]+" Spearman"] = spm
log_metrics('Card', card_metrics, writer)
writer.write('\n')
return all_metrics
def load_data(args, tasks):
'''
Load queries and remove queries not in tasks
'''
logging.info("loading data")
valid_queries = pickle.load(open(os.path.join(args.data_path, "valid-queries.pkl"), 'rb'))
valid_hard_answers = pickle.load(open(os.path.join(args.data_path, "valid-hard-answers.pkl"), 'rb'))
valid_easy_answers = pickle.load(open(os.path.join(args.data_path, "valid-easy-answers.pkl"), 'rb'))
test_queries = pickle.load(open(os.path.join(args.data_path, "test-queries.pkl"), 'rb'))
test_hard_answers = pickle.load(open(os.path.join(args.data_path, "test-hard-answers.pkl"), 'rb'))
test_easy_answers = pickle.load(open(os.path.join(args.data_path, "test-easy-answers.pkl"), 'rb'))
# remove tasks not in args.tasks
for name in all_tasks:
if 'u' in name:
name, evaluate_union = name.split('-')
else:
evaluate_union = args.evaluate_union
if name not in tasks or evaluate_union != args.evaluate_union:
query_structure = name_query_dict[name if 'u' not in name else '-'.join([name, evaluate_union])]
if query_structure in valid_queries:
del valid_queries[query_structure]
if query_structure in test_queries:
del test_queries[query_structure]
return valid_queries, valid_hard_answers, valid_easy_answers, test_queries, test_hard_answers, test_easy_answers
def main(args):
set_global_seed(args.seed)
tasks = args.tasks.split('.')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
dataset_name = args.data_path.split('/')[1].split('-')[0]
if args.data_path.split('/')[1].split('-')[1] == "237":
dataset_name += "-237"
filename = 'results/'+dataset_name+'_'+str(args.fraction)+'_'+str(args.thrshd)+'.txt'
writer = open(filename, 'a+')
with open('%s/stats.txt'%args.data_path) as f:
entrel = f.readlines()
nentity = int(entrel[0].split(' ')[-1])
nrelation = int(entrel[1].split(' ')[-1])
global id2ent, id2rel
with open('%s/id2ent.pkl'%args.data_path, 'rb') as f:
id2ent = pickle.load(f)
with open('%s/ent2id.pkl'%args.data_path, 'rb') as f:
ent2id = pickle.load(f)
with open('%s/id2rel.pkl'%args.data_path, 'rb') as f:
id2rel = pickle.load(f)
args.nentity = nentity
args.nrelation = nrelation
adj_list, edges_y, edges_p = read_triples([os.path.join(args.data_path, "train.txt")], args.nrelation, args.data_path)
valid_queries, valid_hard_answers, valid_easy_answers, test_queries, test_hard_answers, test_easy_answers = load_data(args, tasks)
valid_queries = flatten_query(valid_queries)
valid_dataloader = DataLoader(
TestDataset(
valid_queries,
args.nentity,
args.nrelation,
),
batch_size=args.test_batch_size,
num_workers=args.cpu_num,
collate_fn=TestDataset.collate_fn
)
test_queries = flatten_query(test_queries)
test_dataloader = DataLoader(
TestDataset(
test_queries,
args.nentity,
args.nrelation,
),
batch_size=args.test_batch_size,
num_workers=args.cpu_num,
collate_fn=TestDataset.collate_fn
)
model = KGReasoning(args, device, adj_list, query_name_dict, name_answer_dict)
cp_thrshd = None
if args.do_cp:
cp_thrshd = get_cp_thrshd(model, valid_hard_answers, valid_easy_answers, args, valid_dataloader, query_name_dict, device)
evaluate(model, test_hard_answers, test_easy_answers, args, test_dataloader, query_name_dict, device, writer, edges_y, edges_p, cp_thrshd)
if __name__ == '__main__':
main(parse_args())