-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
68 lines (59 loc) · 2.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# *************************************************************************
# Copyright 2024 ByteDance and/or its affiliates
#
# Copyright 2024 OHTA Authors
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# *************************************************************************
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2024) B-
# ytedance Inc..
# *************************************************************************
from configs import cfg
from core.utils.log_util import Logger, Board
from core.data import create_dataloader
from core.nets import create_network
from core.train import create_trainer, create_optimizer
import os
import torch
def main():
log = Logger()
# log.print_config()
model = create_network()
phase = cfg.get('phase', 'train')
if phase == 'val':
trainer = create_trainer(model, None, board=None)
trainer.progress()
else:
board = Board()
optimizer = create_optimizer(model)
trainer = create_trainer(model, optimizer, board=board)
train_loader = create_dataloader('train')
# estimate start epoch
epoch = trainer.iter // len(train_loader) + 1
while True:
if trainer.iter > cfg.train.maxiter: #cfg.train.maxepoch * len(train_loader):
break
trainer.train(epoch=epoch,
train_dataloader=train_loader)
epoch += 1
trainer.finalize()
if __name__ == '__main__':
main()