-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathinference.py
125 lines (101 loc) · 3.93 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import dataclasses
from typing import Literal
from accelerate import Accelerator
from transformers import HfArgumentParser
from PIL import Image
import json
import itertools
from uno.flux.pipeline import UNOPipeline, preprocess_ref
def horizontal_concat(images):
widths, heights = zip(*(img.size for img in images))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in images:
new_im.paste(img, (x_offset, 0))
x_offset += img.size[0]
return new_im
@dataclasses.dataclass
class InferenceArgs:
prompt: str | None = None
image_paths: list[str] | None = None
eval_json_path: str | None = None
offload: bool = False
num_images_per_prompt: int = 1
model_type: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
width: int = 512
height: int = 512
ref_size: int = -1
num_steps: int = 25
guidance: float = 4
seed: int = 3407
save_path: str = "output/inference"
only_lora: bool = True
concat_refs: bool = False
lora_rank: int = 512
data_resolution: int = 512
pe: Literal['d', 'h', 'w', 'o'] = 'd'
def main(args: InferenceArgs):
accelerator = Accelerator()
pipeline = UNOPipeline(
args.model_type,
accelerator.device,
args.offload,
only_lora=args.only_lora,
lora_rank=args.lora_rank
)
assert args.prompt is not None or args.eval_json_path is not None, \
"Please provide either prompt or eval_json_path"
if args.eval_json_path is not None:
with open(args.eval_json_path, "rt") as f:
data_dicts = json.load(f)
data_root = os.path.dirname(args.eval_json_path)
else:
data_root = "./"
data_dicts = [{"prompt": args.prompt, "image_paths": args.image_paths}]
for (i, data_dict), j in itertools.product(enumerate(data_dicts), range(args.num_images_per_prompt)):
if (i * args.num_images_per_prompt + j) % accelerator.num_processes != accelerator.process_index:
continue
ref_imgs = [
Image.open(os.path.join(data_root, img_path))
for img_path in data_dict["image_paths"]
]
if args.ref_size==-1:
args.ref_size = 512 if len(ref_imgs)==1 else 320
ref_imgs = [preprocess_ref(img, args.ref_size) for img in ref_imgs]
image_gen = pipeline(
prompt=data_dict["prompt"],
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
seed=args.seed + j,
ref_imgs=ref_imgs,
pe=args.pe,
)
if args.concat_refs:
image_gen = horizontal_concat([image_gen, *ref_imgs])
os.makedirs(args.save_path, exist_ok=True)
image_gen.save(os.path.join(args.save_path, f"{i}_{j}.png"))
# save config and image
args_dict = vars(args)
args_dict['prompt'] = data_dict["prompt"]
args_dict['image_paths'] = data_dict["image_paths"]
with open(os.path.join(args.save_path, f"{i}_{j}.json"), 'w') as f:
json.dump(args_dict, f, indent=4)
if __name__ == "__main__":
parser = HfArgumentParser([InferenceArgs])
args = parser.parse_args_into_dataclasses()[0]
main(args)