-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathkernel.cuh
787 lines (616 loc) · 29.8 KB
/
kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
#pragma once
#include "init/init.hpp"
#include "utils/utils.hpp"
#include <cooperative_groups.h>
#include <mma.h>
namespace wmma_reduction {
using namespace nvcuda;
using namespace cooperative_groups;
#ifndef WARP_SIZE
#define WARP_SIZE (32)
#endif // WARP_SIZE
// MMA matrix tile dimensions. (16, 16, 16), (32, 8, 16), and (8, 32,
// 16) are currently supported.
static const int M = 16;
static const int N = 16;
static const int K = 16;
static const int WMMA_TILE_SIZE = (M * N);
static constexpr __host__ __device__ int min_unroll(size_t x, size_t y) {
return x <= y ? x : y;
}
// segment_size = 16
// each warp calculates WMMA_TILES_PER_WARP * 16 segments
template <int WMMA_TILES_PER_WARP, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_16(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * WMMA_TILES_PER_WARP * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx % N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
#pragma unroll
for (int ii = 0; ii < WMMA_TILES_PER_WARP; ii++) {
const size_t globalTileIdx = globalWarpIdx * WMMA_TILES_PER_WARP + ii;
const size_t globalSegmentIdx = globalTileIdx * 16;
const size_t offset = globalTileIdx * WMMA_TILE_SIZE;
const int d_out_s_offset = (localWarpIdx * WMMA_TILES_PER_WARP + ii) * WMMA_TILE_SIZE;
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(out_frag, a_frag, r_frag, out_frag);
wmma::store_matrix_sync(d_out_s + d_out_s_offset, out_frag, 16, wmma::mem_col_major);
// copy the strided results from d_out_s to d_out
if (laneid < 16) {
d_out[globalSegmentIdx + laneid] = d_out_s[d_out_s_offset + laneid];
}
}
}
// each warp calculates 16 consecutive segments
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_16n(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const size_t globalSegmentIdx = globalWarpIdx * 16;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx % N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll min_unroll(SEGMENT_SIZE / 16, 32)
for (size_t ii = 0; ii < SEGMENT_SIZE / 16; ii++) {
const size_t offset = global_offset + ii * 16;
wmma::load_matrix_sync(a_frag, d_in + offset, SEGMENT_SIZE);
wmma::mma_sync(out_frag, a_frag, r_frag, out_frag);
}
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_col_major);
// copy the strided results from d_out_s to d_out
if (laneid < 16) {
d_out[globalSegmentIdx + laneid] = d_out_s[local_offset + laneid];
}
}
// each warp calculates strided 16 segments
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_16n_opt(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t globalSegmentIdx = blockIdx.x * WARPS_PER_BLOCK + localWarpIdx;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx % N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll min_unroll(SEGMENT_SIZE / 16, 32)
for (size_t ii = 0; ii < SEGMENT_SIZE / 16; ii++) {
const size_t offset = global_offset + ii * 16;
// WARPS_PER_BLOCK * SEGMENT_SIZE cannot be more than 2^31 - 1 = 2147483647
wmma::load_matrix_sync(a_frag, d_in + offset, WARPS_PER_BLOCK * SEGMENT_SIZE);
wmma::mma_sync(out_frag, a_frag, r_frag, out_frag);
}
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_col_major);
// copy the strided results from d_out_s to d_out
if (laneid < 16) {
d_out[globalSegmentIdx + laneid * WARPS_PER_BLOCK] = d_out_s[local_offset + laneid];
}
}
// each block calculates consecutive 16 segments
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_16n_block(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half d_out_s[16 * WMMA_TILE_SIZE];
const size_t wmma_tiles_per_segment = SEGMENT_SIZE / 16;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t global_offset = blockIdx.x * 16 * SEGMENT_SIZE;
#pragma unroll
for (int ii = 0;; ii += BLOCK_DIM) {
const auto idx = (threadIdx.x + ii);
const auto col = idx % N;
if (idx >= WMMA_TILE_SIZE) {
break;
}
r_frag_s[idx] = col == 0 ? one<half>() : zero<half>();
#pragma unroll
for (int jj = 0; jj < 16; jj++) {
d_out_s[idx + jj * WMMA_TILE_SIZE] = 0;
}
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < wmma_tiles_per_segment; ii += WARPS_PER_BLOCK) {
const size_t offset = global_offset + (localWarpIdx + ii) * 16;
wmma::load_matrix_sync(a_frag, d_in + offset, SEGMENT_SIZE);
wmma::mma_sync(out_frag, a_frag, r_frag, out_frag);
}
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_col_major);
if (localWarpIdx == 0) {
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(b_frag, d_out_s, 256);
wmma::mma_sync(out_frag, r_t_frag, b_frag, out_frag);
wmma::store_matrix_sync(d_out_s, out_frag, 16, wmma::mem_row_major);
if (laneid < 16) {
d_out[blockIdx.x * 16 + laneid] = d_out_s[laneid];
}
}
}
// segment_size = WMMA_TILE_SIZE
// each warp calculates SEGMENTS_PER_WARP segments
template <int SEGMENTS_PER_WARP, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_256(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * SEGMENTS_PER_WARP * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
#pragma unroll
for (int ii = 0; ii < SEGMENTS_PER_WARP; ii++) {
const size_t globalSegmentIdx = globalWarpIdx * SEGMENTS_PER_WARP + ii;
const size_t offset = globalSegmentIdx * WMMA_TILE_SIZE;
const int d_out_s_offset = (localWarpIdx * SEGMENTS_PER_WARP + ii) * WMMA_TILE_SIZE;
wmma::fill_fragment(ra_frag, zero<half>());
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s + d_out_s_offset, out_frag, 16, wmma::mem_row_major);
// copy the strided results from d_out_s to d_out
if (laneid == 0) {
d_out[globalSegmentIdx] = d_out_s[d_out_s_offset];
}
}
}
// each warp calculates 1 segment
template <typename OUT_TYPE, size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_256n(
const half *__restrict__ d_in, OUT_TYPE *__restrict__ d_out, size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ OUT_TYPE ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ OUT_TYPE d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, OUT_TYPE> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<OUT_TYPE>());
wmma::fill_fragment(ra_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t offset = global_offset + ii * WMMA_TILE_SIZE;
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
}
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_row_major);
// copy the strided results from d_out_s to d_out
if (laneid == 0) {
d_out[globalWarpIdx] = d_out_s[local_offset];
}
}
// each warp calculates 1 segment
template <typename OUT_TYPE, size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_256n_org(
const half *__restrict__ d_in, OUT_TYPE *__restrict__ d_out, size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ OUT_TYPE d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, OUT_TYPE> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<OUT_TYPE>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE + ii * WMMA_TILE_SIZE;
wmma::fill_fragment(ra_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + global_offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
}
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_row_major);
// copy the strided results from d_out_s to d_out
if (laneid == 0) {
d_out[globalWarpIdx] = d_out_s[local_offset];
}
}
// each block calculates 1 segment
template <typename OUT_TYPE, size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_256n_block(
const half *__restrict__ d_in, OUT_TYPE *__restrict__ d_out, size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ OUT_TYPE ra_mat_s[16 * WMMA_TILE_SIZE];
__shared__ OUT_TYPE d_out_s[WMMA_TILE_SIZE];
const size_t globalSegmentIdx = blockIdx.x;
const size_t wmma_tiles_per_segment = SEGMENT_SIZE / WMMA_TILE_SIZE;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
#pragma unroll
for (int ii = 0;; ii += BLOCK_DIM) {
const auto idx = (threadIdx.x + ii);
const auto row = idx / N;
if (idx >= WMMA_TILE_SIZE) {
break;
}
r_frag_s[idx] = row == 0 ? one<half>() : zero<half>();
#pragma unroll
for (int jj = 0; jj < 16; jj++) {
ra_mat_s[idx + jj * WMMA_TILE_SIZE] = 0;
}
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, OUT_TYPE> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<OUT_TYPE>());
wmma::fill_fragment(ra_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < wmma_tiles_per_segment; ii += WARPS_PER_BLOCK) {
const size_t offset = global_offset + (ii + localWarpIdx) * WMMA_TILE_SIZE;
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
}
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
if (localWarpIdx == 0) {
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s, 256);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s, out_frag, 16, wmma::mem_row_major);
half val = laneid < 16 ? d_out_s[laneid] : zero<half>();
#pragma unroll
for (int offset = 16 / 2; offset > 0; offset >>= 1) {
val += __shfl_down_sync(0xffffffff, val, offset);
}
if (threadIdx.x == 0) {
d_out[globalSegmentIdx] = d_out_s[0];
}
}
}
// each block calculates 1 segment
template <typename OUT_TYPE, size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_reduction_256n_block_org(
const half *__restrict__ d_in, OUT_TYPE *__restrict__ d_out, size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ OUT_TYPE ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ OUT_TYPE d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalSegmentIdx = blockIdx.x;
const size_t wmma_tiles_per_segment = SEGMENT_SIZE / WMMA_TILE_SIZE;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
#pragma unroll
for (int ii = 0;; ii += BLOCK_DIM) {
const auto idx = (threadIdx.x + ii);
const auto row = idx / N;
if (idx >= WMMA_TILE_SIZE) {
break;
}
r_frag_s[idx] = row == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, OUT_TYPE> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<OUT_TYPE>());
wmma::fill_fragment(ra_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < wmma_tiles_per_segment; ii += WARPS_PER_BLOCK) {
const size_t offset = global_offset + (ii + localWarpIdx) * WMMA_TILE_SIZE;
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
}
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_row_major);
if (laneid == 0) {
d_out_s[localWarpIdx] = d_out_s[local_offset];
}
__syncthreads();
if (localWarpIdx == 0) {
half val = laneid < WARPS_PER_BLOCK ? d_out_s[laneid] : zero<half>();
#pragma unroll
for (int offset = WARPS_PER_BLOCK / 2; offset > 0; offset >>= 1) {
val += __shfl_down_sync(0xffffffff, val, offset);
}
if (threadIdx.x == 0) {
d_out[globalSegmentIdx] = d_out_s[0];
}
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_reduction_cg(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalThreadIdx = blockIdx.x * BLOCK_DIM + threadIdx.x;
const size_t globalWarpIdx = globalThreadIdx / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
wmma::fill_fragment(ra_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t offset = global_offset + ii * WMMA_TILE_SIZE;
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
}
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_row_major);
__syncthreads();
if (threadIdx.x == 0) {
half block_accum = zero<half>();
#pragma unroll
for (int ii = 0; ii < WARPS_PER_BLOCK; ii++) {
block_accum += d_out_s[ii * WMMA_TILE_SIZE];
}
d_out[blockIdx.x] = block_accum;
}
this_grid().sync();
if (globalThreadIdx == 0) {
half global_accum = zero<half>();
#pragma unroll
for (int ii = 0; ii < gridDim.x; ii++) {
global_accum += d_out[ii];
}
d_out[0] = global_accum;
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_reduction_atomic_w_syncthreads(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half block_reduction_value[8]; // to maintain alignment
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalThreadIdx = blockIdx.x * BLOCK_DIM + threadIdx.x;
const size_t globalWarpIdx = globalThreadIdx / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
if (threadIdx.x == 0) {
block_reduction_value[0] = 0;
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
wmma::fill_fragment(ra_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t offset = global_offset + ii * WMMA_TILE_SIZE;
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
}
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_row_major);
// local reduction
if (laneid == 0) {
xprintf("d_out_s[%d] = %f -- d_out[0] = %f\n", local_offset,
float(d_out_s[local_offset]), float(d_out[0]));
atomicAdd(&block_reduction_value[0], d_out_s[local_offset]);
}
__syncthreads();
// global reduction
if (threadIdx.x == 0) {
atomicAdd(&d_out[0], block_reduction_value[0]);
xprintf("block_reduction = %f -- d_out[0] = %f\n", float(block_reduction_value[0]),
float(d_out[0]));
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_reduction_atomic_w_atomicballot(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ unsigned int block_reduction_visitor;
__shared__ half block_reduction_value[6]; // to maintain alignment
__shared__ half r_frag_s[WMMA_TILE_SIZE];
__shared__ half ra_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalThreadIdx = blockIdx.x * BLOCK_DIM + threadIdx.x;
const size_t globalWarpIdx = globalThreadIdx / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t num_warps = BLOCK_DIM / WARP_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
r_frag_s[idx] = ii == 0 ? one<half>() : zero<half>();
}
if (threadIdx.x == 0) {
block_reduction_value[0] = 0;
block_reduction_visitor = 0;
}
__syncthreads();
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> r_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> r_t_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> ra_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> ra_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(r_frag, r_frag_s, 16);
wmma::load_matrix_sync(r_t_frag, r_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
wmma::fill_fragment(ra_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t offset = global_offset + ii * WMMA_TILE_SIZE;
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(ra_frag, r_frag, a_frag, ra_frag);
}
// store accumulator ra_frag into shared memory and load it into
// matrix_a fragment ra_mat_frag
wmma::store_matrix_sync(ra_mat_s + local_offset, ra_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(ra_mat_frag, ra_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, ra_mat_frag, r_t_frag, out_frag);
wmma::store_matrix_sync(d_out_s + local_offset, out_frag, 16, wmma::mem_row_major);
if (laneid == 0) {
atomicAdd(&block_reduction_value[0], d_out_s[local_offset]);
if (atomicInc(&block_reduction_visitor, num_warps) == (num_warps - 1)) {
atomicAdd(&d_out[0], block_reduction_value[0]);
}
}
}
} // namespace wmma_reduction