-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathseg_cub_warp.cu
161 lines (127 loc) · 5.48 KB
/
seg_cub_warp.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#define CUB_HALF_OPTIMIZATION 1
#include <benchmark/benchmark.h>
#include "init/init.hpp"
#include "reduction/args.hpp"
#include "utils/utils.hpp"
#include <cub/cub.cuh>
using namespace cub;
#ifndef WARP_SIZE
#define WARP_SIZE (32)
#endif // WARP_SIZE
template <int THREADS_PER_BLOCK, int LOGICAL_THREADS_PER_WARP>
__global__ void compute_cub_warp_segmented_reduction(half *d_in, half *d_out) {
constexpr int num_warps = THREADS_PER_BLOCK / LOGICAL_THREADS_PER_WARP;
const int offset = blockIdx.x * blockDim.x + threadIdx.x;
const int warp_id = threadIdx.x / LOGICAL_THREADS_PER_WARP;
const int lane_id = threadIdx.x % LOGICAL_THREADS_PER_WARP;
typedef WarpReduce<half, LOGICAL_THREADS_PER_WARP> WarpReduceT;
__shared__ typename WarpReduceT::TempStorage temp_storage[num_warps];
half thread_data = d_in[offset];
WarpReduceT(temp_storage[warp_id]).Sum(thread_data);
if (lane_id == 0) {
d_out[offset / LOGICAL_THREADS_PER_WARP] = thread_data;
}
}
template <int THREADS_PER_BLOCK, int LOGICAL_THREADS_PER_WARP>
static void CUB_WARP_SEGMENTED_REDUCTION(benchmark::State &state) {
const size_t num_segments = state.range(0);
const size_t segment_size = state.range(1);
if (segment_size != LOGICAL_THREADS_PER_WARP) {
state.SkipWithError("segment size must be LOGICAL_THREADS_PER_WARP");
}
const size_t num_elements = num_segments * segment_size;
const int segments_per_block = THREADS_PER_BLOCK / LOGICAL_THREADS_PER_WARP;
dim3 gridDim, blockDim;
blockDim.x = THREADS_PER_BLOCK;
gridDim.x = (num_segments + segments_per_block - 1) / segments_per_block;
if (gridDim.x >= CUDA_MAX_GRID_SIZE) {
state.SkipWithError(
fmt::format("gridDim.x={} is greater than CUDA_MAX_GRID_SIZE", gridDim.x)
.c_str());
return;
}
half *d_in_fp16 = nullptr;
half *d_out = nullptr;
cudaEvent_t start, stop;
defer(cudaDeviceReset());
try {
PRINT_IF_ERROR(cudaMalloc(&d_in_fp16, num_elements * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&d_out, num_segments * sizeof(half)));
cuda_memory_set(d_in_fp16, 0.001f, num_elements);
PRINT_IF_ERROR(cudaDeviceSynchronize());
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
defer(cudaEventDestroy(start));
defer(cudaEventDestroy(stop));
for (auto _ : state) {
PRINT_IF_ERROR(cudaEventRecord(start));
compute_cub_warp_segmented_reduction<THREADS_PER_BLOCK, LOGICAL_THREADS_PER_WARP>
<<<gridDim, blockDim>>>(d_in_fp16, d_out);
PRINT_IF_ERROR(cudaEventRecord(stop));
PRINT_IF_ERROR(cudaEventSynchronize(stop));
state.PauseTiming();
float msecTotal = 0.0f;
PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop));
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
state.counters.insert({{"num_segments", num_segments},
{"segment_size", segment_size},
{"num_elements", num_segments * segment_size},
{"threads_per_block", THREADS_PER_BLOCK},
{"logical_threads_per_block", LOGICAL_THREADS_PER_WARP},
{"flops",
{state.iterations() * 1.0 * num_segments * segment_size,
benchmark::Counter::kAvgThreadsRate}}});
#if 0
half *h_out = new half[num_elements];
PRINT_IF_ERROR(cudaMemcpy(h_out, d_out, num_elements * sizeof(half),
cudaMemcpyDeviceToHost));
int errors = 0;
for (int j = 0; j < num_segments; j++) {
float correct_segment_sum = 0;
for (int i = 0; i < segment_size; i++) {
correct_segment_sum += h_in[j * segment_size + i];
if (fabs(half_to_float(h_out[j * segment_size + i]) -
correct_segment_sum) > 0.001) {
errors++;
printf("Expected %f, get h_out[%d] = %f\n", correct_segment_sum, i,
half_to_float(h_out[j * segment_size + i]));
}
}
}
if (errors > 0) {
printf("CUB_SEGMENTED_REDUCTION_16 does not agree with SEQUENTIAL! %d "
"errors!\n",
errors);
} else {
printf("Results verified: they agree.\n\n");
}
delete h_out;
#endif
cudaFree(d_in_fp16);
cudaFree(d_out);
} catch (...) {
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaDeviceReset();
const auto p = std::current_exception();
std::rethrow_exception(p);
}
}
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 32, 16)->SEG_16_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 64, 16)->SEG_16_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 128, 16)->SEG_16_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 256, 16)->SEG_16_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 512, 16)->SEG_16_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 1024, 16)
->SEG_16_ARGS()
->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 32, 32)->SEG_32_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 64, 32)->SEG_32_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 128, 32)->SEG_32_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 256, 32)->SEG_32_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 512, 32)->SEG_32_ARGS()->UseManualTime();
BENCHMARK_TEMPLATE(CUB_WARP_SEGMENTED_REDUCTION, 1024, 32)
->SEG_32_ARGS()
->UseManualTime();