-
Notifications
You must be signed in to change notification settings - Fork 0
/
exam_English.tex
294 lines (161 loc) · 6.7 KB
/
exam_English.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
\documentclass[11pt,addpoints]{exam}
\usepackage{amsfonts,amssymb,amsmath, amsthm}
\usepackage{graphicx}
\usepackage{systeme}
%\usepackage{pgf,tikz,pgfplots}
%\pgfplotsset{compat=1.15}
%\usepgfplotslibrary{fillbetween}
\usepackage{mathrsfs}
%\usetikzlibrary{arrows}
%\usetikzlibrary{calc}
\pagestyle{headandfoot}
\firstpageheader{Sample Exam (\numpoints\ points)\\ September 26, 2019}{}{Name: \underline{\hspace{2.5in}}}
%\firstpageheadrule
\runningheader{Sample Exam}{}{Page \thepage\ of \numpages}
\runningheadrule
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\begin{document}
\begin{center}
\fbox{\fbox{\parbox{6in}{\centering
No notes, calculators, or other aids are allowed. Read all directions carefully and write your answers in the space provided. To receive full credit, you must show all of your work.
}}}
\end{center}
\begin{questions} %------------------------------------------
\fullwidth{\emph{Math mode} is used to display mathematical content in \LaTeX, and there are two main forms of math mode: \emph{display mode} and \emph{inline mode}. Question~\ref{DisplayModeExample} uses \emph{display mode}, which centers the math content on its own line. Question~\ref{InlineModeExample} uses \emph{inline mode} to render the math content within a line of text.}
\question[10] \label{DisplayModeExample}
Find an equation for the tangent line to the following curve at the point (0,1).
\[2xy^3 + y^4 = 1 + x^3y\]
\vspace{\stretch{1}}
\question[10] \label{InlineModeExample}
Use the linearization of $f(x) = \sqrt[3]{x}$ at $x=8$ to approximate $\sqrt[3]{8.24}$.
\vspace{\stretch{1}}
\newpage %---------------------------------------------------
\question \label{DisplaystyleExamples}
Evaluate each expression.
\begin{parts}
\part[5]
$\displaystyle\lim_{x\to\infty} \left( 1+\frac{1}{x} \right)^{x}$
\vspace{\stretch{1}}
\part[5]
$\displaystyle\frac{d}{dx} \left[ \frac{\sin^2(\pi x)}{\sqrt{3x+1}} \right]$
\vspace{\stretch{1}}
\part[5]
$\displaystyle\int_1^{e^2} t \ln t\ dt$
\vspace{\stretch{2}}
\end{parts}
\question
Using the \emph{displaystyle} command (as in each part of question~\ref{DisplaystyleExamples}) forces fractions, limits, integrals, etc. to be displayed larger and more clearly even when using inline mode. Without \emph{displaystyle}, those math expressions will be shrunk when using inline mode, like so:
\begin{parts}
\part[5]
$\lim_{x\to\infty} \left( 1+\frac{1}{x} \right)^{x}$
\vspace{\stretch{1}}
\part[5]
$\frac{d}{dx} \left[ \frac{\sin^2(\pi x)}{\sqrt{3x+1}} \right]$
\vspace{\stretch{1}}
\part[5]
$\int_1^{e^2} t \ln t\ dt$
\vspace{\stretch{2}}
\end{parts}
\newpage %---------------------------------------------------
\question[8]
Use the Gauss-Jordan elimination method to find all solutions (if any) to the following system of equations.
\begin{equation*}
\systeme{\frac{1}{2}x + \frac{3}{2}y - 2z = 10, 2x + 2y + 4z = 24, x + 2y = 16}
\end{equation*}
\begin{align*}
\frac{1}{2}x + \frac{3}{2}y - 2z & = 10 \\
2x + 2y + 4z & = 24\\
x + 2y &= 16
\end{align*}
\vspace{\stretch{2}}
\question[4] Use the following matrices to calculate $(A+4B)C$.
\[
A = \left[\begin{matrix} 3 & 4 \\ -5 & 1 \end{matrix}\right] \qquad
B = \left[\begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix}\right] \qquad
C = \left[\begin{matrix} 5 & -6 & 2 \\ 1 & 1 & -2 \end{matrix}\right].
\]
\vspace{\stretch{1}}
\newpage %---------------------------------------------------
\question[3]
The lines $2x-6y=3$ and $x+3y=9$ are $\ldots$
\begin{choices}
\choice parallel
\choice perpendicular
\choice neither A nor B
\end{choices}
\vspace{\stretch{1}}
\question[3]
Which of the following expressions are equivalent to $\ln(16)$? Circle all that apply.
\begin{oneparchoices}
\choice $\ln(20)-\ln(4)$
\choice $\ln(\frac{1}{2})+\ln(32)$
\choice $\ln(2)\cdot\ln(8)$
\choice $2\ln(4)$
\end{oneparchoices}
\vspace{\stretch{1}}
\question[2]
If $f''(x)$ is \fillin[negative][4cm] on some interval, then the graph of $f$ is concave down on that interval.
\vspace{\stretch{1}}
\question[2]
What is the name for the set of all valid inputs of a function?
\answerline
\vspace{\stretch{1}}
\question[4]
Sketch the graph of the piecewise function $f(x) = \displaystyle\begin{cases} 5-x^2 & \text{if } x<3 \\ x-2 & \text{if } x\ge 3 \end{cases}$.
\begin{center}
\begin{tikzpicture}[scale=0.8]
\begin{axis}[axis lines=middle,grid=both,
xtick distance=3,ytick distance=3,minor tick num=2,
x=0.5cm,y=0.5cm,xmin=-14,xmax=14,ymin=-8,ymax=8]
% no plots to draw ... just empty grid with axes
\end{axis}
\end{tikzpicture}
\end{center}
\newpage %---------------------------------------------------
\question[10]
A farmer wants to build two adjacent animal pens using 5 straight sections of fence, as shown below. Which dimensions will produce the \textbf{largest total area} if the farmer has 60 feet of fence to use?
\begin{tikzpicture}
\draw[very thick] (0,0) rectangle (3,2);
\draw[very thick] (1.8,0) -- (1.8,2);
\draw[|-|,thin] (0,-0.2) -- node[below] {$x$} (3,-0.2);
\draw[<->,thin] (-0.2,0) -- node[left] {$y$} (-0.2,2);
\end{tikzpicture}
\vspace{\stretch{1}}
\question[10]
Find the area of the region enclosed by $y=x^2+2x-7$ and $y=x-1$.
\begin{flushright}
\begin{tikzpicture}[scale=0.7]
\begin{axis}[axis on top,axis lines=middle,x=0.5cm,y=0.5cm,
xmin=-7,xmax=7,ymin=-9,ymax=5]
\addplot[name path=F,black,very thick,domain=-7:7,samples=100]{x^2 + 2*x - 7};
\addplot[name path=G,black,very thick,domain=-7:7]{x - 1};
\addplot[black!30] fill between[of=F and G,soft clip={domain=-3:2}];
\end{axis}
\end{tikzpicture}
\end{flushright}
\vspace{\stretch{1}}
\newpage %---------------------------------------------------
\question \LaTeX\ can display saved images in formats like JPG, PNG, PDF, and more.
\begin{center}
\includegraphics[width=4in]{unitcircle.png}
\end{center}
\begin{center}
\includegraphics[width=4in]{unitcircle.pdf}
\end{center}
\newpage %---------------------------------------------------
\question Here are a few more sample math expressions.
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \]
\[ [a,b) = \{ x\in\mathbb{R} \mid a \le x < b \} \]
\[ m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \]
\[ \int_a^b f(x)\ dx = \lim_{n\to\infty} \left( \sum_{i=1}^n f(x_i^*) \Delta x_i \right) \]
\[ \frac{d}{dx} \left[ \int_a^x f'(t)\ dt \right] = f(x) \]
\[ \sin^2\alpha + \cos^2\alpha = 1 \]
\[ e^{i\theta} = \cos\theta + i\sin\theta \]
\[ \vec{v} = \langle 2,3,-1 \rangle = 2\hat{\imath} + 3\hat{\jmath} - \hat{k} \]
\[ \overline{AB}, \overleftrightarrow{AB}, \angle ABC, \measuredangle ABC \]
\[ \triangle ABC \cong \triangle DEF \]
\[ \sim (p \lor q) \Longleftrightarrow \ \sim p \ \land \sim q \]
\end{questions}
\end{document}