-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtrees.py
358 lines (321 loc) · 10.2 KB
/
trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
"""
Design a Binary Search Tree class that supports the following:
1. Insert a value
2. Remove a value. This method shold remove the first occurence of a value
3. Find a value. If the value is found it should return the node with the value
else return false.
"""
class Node:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, value):
node = Node(value)
if not self.root: #if there is no root, make the node the root
self.root = node
return self
tree = self.root # else, store the root in tree variable
while True:
if value < tree.value:
# move left
if not tree.left: # if the node is a leaf
tree.left = node
return self
tree = tree.left
else:
# move right
# value > = tree.value
if not tree.right:
tree.right = node
return self
tree = tree.right
def find(self, value):
if not self.root:
return False
tree = self.root
while tree:
if value < tree.value:
# move left
tree = tree.left
elif value > tree.value:
# move right
tree = tree.right
elif value == tree.value:
return tree
return False
def remove(self, value, current, parent=None):
current = self.root
if not self.root:
return False
while current:
if value < current.value:
parent = current
current = current.left
elif value > current.value:
parent = current
current = current.right
else:
# found the node to be deleted
# if node to be deleted has 2 children
if current.left != None and current.right != None:
current.value = self.getMin(current.right)
self.remove(current.value, current.right, current) #remove the min value
elif parent != None: # if deleting the root node
if current.left != None: #if it has a lefft child only.
current.value = current.left.value
current.left = current.left.left
current.right = current.left.right
elif current.right != None: # if it has a right child only
current.value = current.right.value
current.left = current.right.left
current.right = current.right.right
else:
# this is a single node bst
self.root = None
elif current == parent.left:
parent.left = current.left if current.left != None else current.right
elif current == parent.right:
parent.right = current.left if current.left != None else current.right
# break out of the while loop
break
return self
def getMin(self, value):
node = Node(value)
while node.left != None:
node = node.left
return node.value
def breadth_first(self):
if self.root == None:
return []
arr = []
# queue as array to save time (queue as linked list is better)
queue = []
node = self.root
while len(queue):
node = queue.pop(0)
arr.append(node)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return arr
def dfs_in_order(self):
if self.root == None:
return []
arr = []
current = self.root
def trav(self, node):
if node.left:
trav(node.left)
arr.append(node)
if node.right:
trav(node.right)
trav(current)
return arr
# current, left, right
def dfs_pre_order(self):
if self.root == None:
return []
arr = []
current = self.root
def trav(self, node):
node = Node(self, node)
arr.append(node)
if node.left:
trav(node.left)
if node.right:
trav(node.right)
trav(current)
return arr
# left, right, current
def dfs_post_order(self):
if self.root == None:
return []
arr = []
current = self.root
def trav(node):
if node.left:
trav(node.left)
if node.right:
trav(node.right)
arr.append(node)
trav(current)
return arr
"""
Write a 4 instance methods for a Binary Search Tree class to traverse the BST
1. Method 1: traverse the tree breadth first and return an array that contains
all values of the BST
2. Method 2: traverse the tree depth first - in-order and return an array that
contains all the values of the BST
3. Method 3: traverse the tree depth first - Pre-order and return an array that
contains all the values fo the BST
4. Method 4: traverse the tree depth first - Post-order and return an array that
contains all the values of the BST
"""
# implemented in the BinarySearchTree class
# 1. breadth_first()
# 2. dfs_in_order()
# 3. dfs_pre_order()
# 4. dfs_post_order()
bst = BinarySearchTree()
bst.insert(20)
bst.insert(6)
bst.insert(35)
bst.insert(3)
bst.insert(8)
bst.insert(27)
bst.insert(55)
bst.insert(1)
bst.insert(3)
bst.insert(25)
bst.insert(29)
bst.insert(60)
print(f'breadth first: {bst.breadth_first()}')
"""
Write a function that takes the root of a binary tree, and returns the level order
traversal of its nodes' values. (i.e., from left to right, level by level). Initially
write an instance method for the Binary Search tree class to insert the values given
as an array into the Binary tree (from left to right, level by level). Each value in
the array which is not null is to be made a node and added to the tree
"""
class BinaryTree:
def __init__(self):
self.root = None
def insert(self, arr):
if len(arr) == 0:
return
i = 0
# if root is null
if not self.root:
if arr[0] == None:
return
else:
node = Node(arr[0])
self.root = node
i += 1
if i == len(arr):
return self
# insert elements
queue = [self.root]
while queue:
current = queue.pop(0)
# left
if not current.left:
if arr[i] is not None:
node = Node(arr[i])
current.left = node
i += 1
if i == len(arr):
return self
if current.left:
queue.append(current.left)
# right
if not current.right:
if arr[i] is not None:
node = Node(arr[i])
current.right = node
i += 1
if i == len(arr):
return self
if current.right:
queue.append(current.right)
def level_order_traversal(root):
if not root:
return []
output = []
queue = [root]
while len(queue):
length = len(queue)
count = 0
curr_level_values = []
while count < length:
curr = queue.pop(0)
curr_level_values.append(curr)
if curr.left:
queue.append(curr.left)
if curr.right:
queue.append(curr.right)
count += 1
output.append(curr_level_values)
tree = BinaryTree()
tree.insert([7,11,1,None,7,2,8,None,None,None,3,None,None,5,None])
print(level_order_traversal(tree.root))
"""
1. Given the root of a binary tree, imagine yourself standing on the right side of it
return the values of the nodes you can see ordered from top to bottom.
2. Given the root of the binary tree, imagine yourself standing on the left side of it
return the values of the nodes you can see ordered from top to bottom
"""
def right_view(root):
if not root:
return []
right = []
queue = [root]
while len(queue):
length = len(queue)
count = 0
while count < length:
count += 1
current = queue.pop(0)
if count == length:
right.append(current)
if current.left:
queue.append(current.ledft)
if current.right:
queue.append(current.right)
return right
def left_view(value):
root = Node(value)
if not root:
return []
left = []
queue = [root]
while len(queue):
length = len(queue)
count = 0
while count < length:
count += 1
current = queue.pop(0)
if count == 1:
left.append(current.value)
if current.left:
queue.append(current.left)
if current.right:
queue.append(current.right)
return left
"""
Given the root of a binary tree, invert the tree, and return its root.
(Invert means to swap every left node for its corresponding right node/get mirror image)
"""
def invert_iterative(value):
root = Node(value)
if not root:
return []
queue = [root]
while len(queue):
current = queue.pop(0)
# swap left and right
temp = current.right
current.right = current.left
current.left = temp
if current.left:
queue.append(current.left)
if current.right:
queue.append(current.right)
return root
def invert_recursive(value):
node = Node(value)
if not node:
return []
# swap
temp = node.left
node.left = node.right
node.right = temp
# recursive call
invert_recursive(node.left)
invert_recursive(node.right)
return node