-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patht5_single-task_train.py
226 lines (179 loc) · 7.83 KB
/
t5_single-task_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# To silence TensorFlow
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import os
import random
import sys
from datetime import datetime
from random import randrange
import evaluate
import nltk
import numpy as np
import torch
from datasets import concatenate_datasets, load_dataset
from nltk.tokenize import sent_tokenize
from transformers import (AutoModelForSeq2SeqLM, AutoTokenizer,
DataCollatorForSeq2Seq, Seq2SeqTrainer,
Seq2SeqTrainingArguments, T5ForConditionalGeneration,
T5Tokenizer, set_seed, GenerationConfig)
import argparse
from tokenization.tokenization_utils import smi_tokenizer_spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
template = "{sentence}"
portion="train"
def load_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--train_path", type=str, required=True, default=None)
parser.add_argument("--val_path", type=str, required=True, default=None)
parser.add_argument("--seed",type=int, required=False, default=42)
parser.add_argument("--freeze",type=str, required=False, default="none", choices=['none', 'encoder'])
parser.add_argument("--max_new_tokens", type=int, default=96, required=False)
parser.add_argument("--max_length", type=int, default=192, required=False)
parser.add_argument("--max_source_len", type=int, default=96, required=False)
parser.add_argument("--max_target_len", type=int, default=192, required=False)
parser.add_argument("--tokenization", type=str, required=False, default="none", choices=['none','map','shrink', 'map_shrink', 'spaces', 'shrink_spaces'])
args = parser.parse_args()
return args
def main():
# Set arguments
args = load_arguments()
print(args)
# Set the seed
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
set_seed(args.seed)
# Set the model and its tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_path, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(args.model_path,use_cache=True)
# Now also set the generation config (non-mandatory)
generation_config = GenerationConfig.from_pretrained(
args.model_path,
do_sample=False,
max_length=args.max_length,
max_new_tokens=args.max_new_tokens,
)
# Freeze some parameters or not: this code supports only freezing of the encoder at the moment
modules_to_freeze = []
if args.freeze == "encoder":
print("Freezing all encoder layers...")
modules_to_freeze = [model.encoder.block[i] for i in range(len(model.encoder.block))]
for module in modules_to_freeze:
for param in module.parameters():
param.requires_grad = False
# Load the dataset (via HuggingFace functions)
max_source_len, max_target_len = args.max_source_len, args.max_target_len
dataset = load_dataset("csv", data_files={"train": [args.train_path], "val": [args.val_path]})
# Prepare the dataset for training and evaluation: key functionality
def preprocess_function(sample, padding="max_length"):
inputs = []
outputs = []
for in_mol, out_mol in zip(sample["Input"], sample["Output"]):
# Set inputs
if args.tokenization == "spaces":
in_mol = smi_tokenizer_spaces(in_mol)
else:
in_mol = in_mol
final_input = template.replace("{sentence}", in_mol)
# Set outputs
if args.tokenization == "spaces":
out_mol = smi_tokenizer_spaces(out_mol)
else:
out_mol = out_mol
final_output = out_mol
inputs.append(final_input)
outputs.append(final_output)
model_inputs = tokenizer(inputs, max_length=max_source_len, padding=padding, truncation=True)
print("Total items:", len(outputs))
labels = tokenizer(text_target=outputs, max_length=max_target_len, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length":
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=["Input", "Output"])
print(f"Keys of tokenized dataset: {list(tokenized_dataset[portion].features)}")
print(tokenized_dataset["val"][0])
em = evaluate.load("exact_match")
def compute_eval_metrics_training(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
preds = np.where(preds > 0, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True, clean_up_tokenization_spaces=True)
avg_gold_len = 0
avg_pred_len = 0
for item in decoded_labels:
avg_gold_len += len(item)
for item in decoded_preds:
avg_pred_len += len(item)
decoded_labels_f = [[item] for item in decoded_labels]
result_em = em.compute(predictions=decoded_preds, references=decoded_labels)
result_returned = {}
result_returned["exact_match"] = round(100*float(result_em["exact_match"]),2)
result_returned["avg_gold_len"] = avg_gold_len/float(len(decoded_labels))
result_returned["avg_pred_len"] = avg_pred_len/float(len(decoded_preds))
return result_returned
# we want to ignore tokenizer pad token in the loss
label_pad_token_id = -100
# Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8,
)
# Define training args
timestamp = datetime.now().strftime('%Y%m%d_%H:%M:%S.%f')[:-4]
experiment_name = "flant5s-orig-e50-lr003-adamw-wlinear-b64-prodsep-none"
output_folder = f"./output/{experiment_name}_{timestamp}"
print(output_folder)
training_args = Seq2SeqTrainingArguments(
output_dir=f"{output_folder}",
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
gradient_accumulation_steps=2,
generation_config=generation_config,
generation_max_length=args.max_target_len,
predict_with_generate=True,
fp16=False, # Overflows with fp16
learning_rate=0.003,
num_train_epochs=50,
#max_steps=100000,
# logging & evaluation strategies
logging_dir=f"{output_folder}/logs",
logging_strategy="steps",
logging_steps=1000,
gradient_checkpointing=False,
evaluation_strategy="steps",
#optim="adafactor",
eval_steps=10000,
save_strategy="steps",
save_steps=10000,
warmup_steps=5000,
weight_decay=0.01,
#lr_scheduler_type="inverse_sqrt",
save_total_limit=1,
load_best_model_at_end=True,
metric_for_best_model="exact_match",
)
# Create Trainer instance
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["val"],
compute_metrics=compute_eval_metrics_training,
)
#... and train
trainer.train()
trainer.save_model(output_folder)
if __name__ == "__main__":
main()