-
Notifications
You must be signed in to change notification settings - Fork 106
/
m68kmmu.h
1349 lines (1167 loc) · 33.2 KB
/
m68kmmu.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
m68kmmu.h - PMMU implementation for 68851/68030/68040
By R. Belmont
Copyright Nicola Salmoria and the MAME Team.
Visit http://mamedev.org for licensing and usage restrictions.
*/
// MMU status register bit definitions
struct m68ki_cpu_core;
#if 0
#define MMULOG(A) printf A
#else
#define MMULOG(...)
#endif
#if 1
#define logerror printf
#else
#define logerror(...)
#endif
// MMU SR register fields
#define M68K_MMU_SR_BUS_ERROR 0x8000
#define M68K_MMU_SR_SUPERVISOR_ONLY 0x2000
#define M68K_MMU_SR_WRITE_PROTECT 0x0800
#define M68K_MMU_SR_INVALID 0x0400
#define M68K_MMU_SR_MODIFIED 0x0200
#define M68K_MMU_SR_TRANSPARENT 0x0040
// MMU translation table descriptor field definitions
#define M68K_MMU_DF_DT 0x00000003
#define M68K_MMU_DF_DT_INVALID 0x00000000
#define M68K_MMU_DF_DT_PAGE 0x00000001
#define M68K_MMU_DF_DT_TABLE_4BYTE 0x00000002
#define M68K_MMU_DF_DT_TABLE_8BYTE 0x00000003
#define M68K_MMU_DF_WP 0x00000004
#define M68K_MMU_DF_USED 0x00000008
#define M68K_MMU_DF_MODIFIED 0x00000010
#define M68K_MMU_DF_CI 0x00000040
#define M68K_MMU_DF_SUPERVISOR 0x00000100
#define M68K_MMU_DF_ADDR_MASK 0xfffffff0
#define M68K_MMU_DF_IND_ADDR_MASK 0xfffffffc
// MMU ATC Fields
#define M68K_MMU_ATC_BUSERROR 0x08000000
#define M68K_MMU_ATC_CACHE_IN 0x04000000
#define M68K_MMU_ATC_WRITE_PR 0x02000000
#define M68K_MMU_ATC_MODIFIED 0x01000000
#define M68K_MMU_ATC_MASK 0x00ffffff
#define M68K_MMU_ATC_SHIFT 8
#define M68K_MMU_ATC_VALID 0x08000000
// MMU Translation Control register
#define M68K_MMU_TC_SRE 0x02000000
#define M68K_MMU_TC_FCL 0x01000000
// TT register
#define M68K_MMU_TT_ENABLE 0x8000
#define m_side_effects_disabled 0
/* decodes the effective address */
uint32 DECODE_EA_32(m68ki_cpu_core *state, int ea)
{
int mode = (ea >> 3) & 0x7;
int reg = (ea & 0x7);
switch (mode)
{
case 2: // (An)
{
return REG_A[reg];
}
case 3: // (An)+
{
uint32 ea = EA_AY_PI_32();
return ea;
}
case 5: // (d16, An)
{
uint32 ea = EA_AY_DI_32();
return ea;
}
case 6: // (An) + (Xn) + d8
{
uint32 ea = EA_AY_IX_32();
return ea;
}
case 7:
{
switch (reg)
{
case 0: // (xxx).W
{
uint32 ea = OPER_I_16(state);
return ea;
}
case 1: // (xxx).L
{
uint32 d1 = OPER_I_16(state);
uint32 d2 = OPER_I_16(state);
uint32 ea = (d1 << 16) | d2;
return ea;
}
case 2: // (d16, PC)
{
uint32 ea = EA_PCDI_32();
return ea;
}
default: fatalerror("m68k: DECODE_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
}
break;
}
default: fatalerror("m68k: DECODE_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
}
return 0;
}
void pmmu_set_buserror(m68ki_cpu_core *state, uint32 addr_in)
{
if (!m_side_effects_disabled && ++state->mmu_tmp_buserror_occurred == 1)
{
state->mmu_tmp_buserror_address = addr_in;
state->mmu_tmp_buserror_rw = state->mmu_tmp_rw;
state->mmu_tmp_buserror_fc = state->mmu_tmp_fc;
state->mmu_tmp_buserror_sz = state->mmu_tmp_sz;
}
}
// pmmu_atc_add: adds this address to the ATC
void pmmu_atc_add(m68ki_cpu_core *state, uint32 logical, uint32 physical, int fc, int rw)
{
// get page size (i.e. # of bits to ignore); is 10 for Apollo
int ps = (state->mmu_tc >> 20) & 0xf;
uint32 atc_tag = M68K_MMU_ATC_VALID | ((fc & 7) << 24) | ((logical >> ps) << (ps - 8));
uint32 atc_data = (physical >> ps) << (ps - 8);
if (state->mmu_tmp_sr & (M68K_MMU_SR_BUS_ERROR|M68K_MMU_SR_INVALID|M68K_MMU_SR_SUPERVISOR_ONLY))
{
atc_data |= M68K_MMU_ATC_BUSERROR;
}
if (state->mmu_tmp_sr & M68K_MMU_SR_WRITE_PROTECT)
{
atc_data |= M68K_MMU_ATC_WRITE_PR;
}
if (!rw && !(state->mmu_tmp_sr & M68K_MMU_SR_WRITE_PROTECT))
{
atc_data |= M68K_MMU_ATC_MODIFIED;
}
// first see if this is already in the cache
for (int i = 0; i < MMU_ATC_ENTRIES; i++)
{
// if tag bits and function code match, don't add
if (state->mmu_atc_tag[i] == atc_tag)
{
MMULOG(("%s: hit, old %08x new %08x\n", __func__, state->mmu_atc_data[i], atc_data));
state->mmu_atc_data[i] = atc_data;
return;
}
}
// find an open entry
int found = -1;
for (int i = 0; i < MMU_ATC_ENTRIES; i++)
{
if (!(state->mmu_atc_tag[i] & M68K_MMU_ATC_VALID))
{
found = i;
break;
}
}
// did we find an entry? steal one by round-robin then
if (found == -1)
{
found = state->mmu_atc_rr++;
if (state->mmu_atc_rr >= MMU_ATC_ENTRIES)
{
state->mmu_atc_rr = 0;
}
}
// add the entry
MMULOG(("ATC[%2d] add: log %08x -> phys %08x (fc=%d) data=%08x\n",
found, (logical >> ps) << ps, (physical >> ps) << ps, fc, atc_data));
state->mmu_atc_tag[found] = atc_tag;
state->mmu_atc_data[found] = atc_data;
}
// pmmu_atc_flush: flush entire ATC
// 7fff0003 001ffd10 80f05750 is what should load
void pmmu_atc_flush(m68ki_cpu_core *state)
{
MMULOG(("ATC flush: pc=%08x\n", state->ppc));
// std::fill(std::begin(state->mmu_atc_tag), std::end(state->mmu_atc_tag), 0);
for(int i=0;i<MMU_ATC_ENTRIES;i++)
state->mmu_atc_tag[i]=0;
state->mmu_atc_rr = 0;
}
int fc_from_modes(m68ki_cpu_core *state, uint16 modes);
void pmmu_atc_flush_fc_ea(m68ki_cpu_core *state, uint16 modes)
{
unsigned int fcmask = (modes >> 5) & 7;
unsigned int fc = fc_from_modes(state, modes) & fcmask;
unsigned int ps = (state->mmu_tc >> 20) & 0xf;
unsigned int mode = (modes >> 10) & 7;
uint32 ea;
switch (mode)
{
case 1: // PFLUSHA
MMULOG(("PFLUSHA: mode %d\n", mode));
pmmu_atc_flush(state);
break;
case 4: // flush by fc
MMULOG(("flush by fc: %d, mask %d\n", fc, fcmask));
for(int i=0,e;i<MMU_ATC_ENTRIES;i++)
{
e=state->mmu_atc_tag[i];
if ((e & M68K_MMU_ATC_VALID) && ((e >> 24) & fcmask) == fc)
{
MMULOG(("flushing entry %08x\n", e));
state->mmu_atc_tag[i] = 0;
}
}
break;
case 6: // flush by fc + ea
ea = DECODE_EA_32(state, state->ir);
MMULOG(("flush by fc/ea: fc %d, mask %d, ea %08x\n", fc, fcmask, ea));
for(unsigned int i=0,e;i<MMU_ATC_ENTRIES;i++)
{
e=state->mmu_atc_tag[i];
if ((e & M68K_MMU_ATC_VALID) &&
(((e >> 24) & fcmask) == fc) &&
// (((e >> ps) << (ps - 8)) == ((ea >> ps) << (ps - 8))))
( (e << ps) == (ea >> 8 << ps) ))
{
MMULOG(("flushing entry %08x\n", e));
state->mmu_atc_tag[i] = 0;
}
}
break;
default:
logerror("PFLUSH mode %d not supported\n", mode);
break;
}
}
//template<bool ptest>
uint16 pmmu_atc_lookup(m68ki_cpu_core *state, uint32 addr_in, int fc, uint16 rw, uint32 *addr_out, int ptest)
{
MMULOG(("%s: LOOKUP addr_in=%08x, fc=%d, ptest=%d, rw=%d\n", __func__, addr_in, fc, ptest,rw));
unsigned int ps = (state->mmu_tc >> 20) & 0xf;
uint32 atc_tag = M68K_MMU_ATC_VALID | ((fc & 7) << 24) | ((addr_in >> ps) << (ps - 8));
for (int i = 0; i < MMU_ATC_ENTRIES; i++)
{
if (state->mmu_atc_tag[i] != atc_tag)
{
continue;
}
uint32 atc_data = state->mmu_atc_data[i];
if (!ptest && !rw)
{
// According to MC86030UM:
// "If the M bit is clear and a write access to this logical
// address is attempted, the MC68030 aborts the access and initiates a table
// search, setting the M bit in the page descriptor, invalidating the old ATC
// entry, and creating a new entry with the M bit set.
if (!(atc_data & M68K_MMU_ATC_MODIFIED))
{
state->mmu_atc_tag[i] = 0;
continue;
}
}
state->mmu_tmp_sr = 0;
if (atc_data & M68K_MMU_ATC_MODIFIED)
{
state->mmu_tmp_sr |= M68K_MMU_SR_MODIFIED;
}
if (atc_data & M68K_MMU_ATC_WRITE_PR)
{
state->mmu_tmp_sr |= M68K_MMU_SR_WRITE_PROTECT;
}
if (atc_data & M68K_MMU_ATC_BUSERROR)
{
state->mmu_tmp_sr |= M68K_MMU_SR_BUS_ERROR|M68K_MMU_SR_INVALID;
}
*addr_out = (atc_data << 8) | (addr_in & ~(((uint32)~0) << ps));
MMULOG(("%s: addr_in=%08x, addr_out=%08x, MMU SR %04x\n",
__func__, addr_in, *addr_out, state->mmu_tmp_sr));
return 1;
}
MMULOG(("%s: lookup failed\n", __func__));
if (ptest)
{
state->mmu_tmp_sr = M68K_MMU_SR_INVALID;
}
return 0;
}
uint16 pmmu_match_tt(m68ki_cpu_core *state, uint32 addr_in, int fc, uint32 tt, uint16 rw)
{
if (!(tt & M68K_MMU_TT_ENABLE))
{
return 0;
}
// transparent translation enabled
uint32 address_base = tt & 0xff000000;
uint32 address_mask = ((tt << 8) & 0xff000000) ^ 0xff000000;
uint32 fcmask = (~tt) & 7;
uint32 fcbits = (tt >> 4) & 7;
uint16 rwmask = !!(~tt & 0x100);
uint16 rwbit = !!(tt & 0x200);
if ((addr_in & address_mask) != (address_base & address_mask))
{
return 0;
}
if ((fc & fcmask) != (fcbits & fcmask))
{
return 0;
}
if ((rw & rwmask) != (rwbit & rwmask))
{
return 0;
}
state->mmu_tmp_sr |= M68K_MMU_SR_TRANSPARENT;
return 1;
}
void update_descriptor(m68ki_cpu_core *state, uint32 tptr, int type, uint32 entry, int16 rw)
{
// FIXME: Silence unused variable warning
if (state) {}
if (type == M68K_MMU_DF_DT_PAGE && !rw &&
!(entry & M68K_MMU_DF_MODIFIED) &&
!(entry & M68K_MMU_DF_WP))
{
MMULOG(("%s: set M+U at %08x\n", __func__, tptr));
m68k_write_memory_32(tptr, entry | M68K_MMU_DF_USED | M68K_MMU_DF_MODIFIED);
}
else if (type != M68K_MMU_DF_DT_INVALID && !(entry & M68K_MMU_DF_USED))
{
MMULOG(("%s: set U at %08x\n", __func__, tptr));
m68k_write_memory_32(tptr, entry | M68K_MMU_DF_USED);
}
}
//template<bool _long>
void update_sr(m68ki_cpu_core *state, int type, uint32 tbl_entry, int fc, uint16 _long)
{
if (m_side_effects_disabled)
{
return;
}
switch(type)
{
case M68K_MMU_DF_DT_INVALID:
// Invalid has no flags
break;
case M68K_MMU_DF_DT_PAGE:
if (tbl_entry & M68K_MMU_DF_MODIFIED)
{
state->mmu_tmp_sr |= M68K_MMU_SR_MODIFIED;
}
/* FALLTHROUGH */
case M68K_MMU_DF_DT_TABLE_4BYTE:
/* FALLTHROUGH */
case M68K_MMU_DF_DT_TABLE_8BYTE:
if (tbl_entry & M68K_MMU_DF_WP)
{
state->mmu_tmp_sr |= M68K_MMU_SR_WRITE_PROTECT;
}
if (_long && !(fc & 4) && (tbl_entry & M68K_MMU_DF_SUPERVISOR))
{
state->mmu_tmp_sr |= M68K_MMU_SR_SUPERVISOR_ONLY;
}
break;
default:
break;
}
}
//template<bool ptest>
uint16 pmmu_walk_tables(m68ki_cpu_core *state, uint32 addr_in, int type, uint32 table, uint8 fc, int limit, uint16 rw,
uint32 *addr_out, int ptest)
{
int level = 0;
uint32 bits = state->mmu_tc & 0xffff;
int pagesize = (state->mmu_tc >> 20) & 0xf;
int is = (state->mmu_tc >> 16) & 0xf;
int bitpos = 12;
int resolved = 0;
int pageshift = is;
addr_in <<= is;
state->mmu_tablewalk = 1;
if (state->mmu_tc & M68K_MMU_TC_FCL)
{
bitpos = 16;
}
do
{
int indexbits = (bits >> bitpos) & 0xf;
int table_index = (bitpos == 16) ? fc : (addr_in >> (32 - indexbits));
bitpos -= 4;
uint16 indirect = (!bitpos || !(bits >> bitpos)) && indexbits;
uint32 tbl_entry, tbl_entry2;
MMULOG(("%s: type %d, table %08x, addr_in %08x, indexbits %d, pageshift %d, indirect %d table_index %08x, rw=%d fc=%d\n",
__func__, type, table, addr_in, indexbits, pageshift, indirect, table_index, rw, fc));
switch(type)
{
case M68K_MMU_DF_DT_INVALID: // invalid, will cause MMU exception
state->mmu_tmp_sr = M68K_MMU_SR_INVALID;
MMULOG(("PMMU: DT0 PC=%x (addr_in %08x -> %08x)\n", state->ppc, addr_in, *addr_out));
resolved = 1;
break;
case M68K_MMU_DF_DT_PAGE: // page descriptor, will cause direct mapping
if (!ptest)
{
table &= ((uint32)~0) << pagesize;
*addr_out = table + (addr_in >> pageshift);
}
resolved = 1;
break;
case M68K_MMU_DF_DT_TABLE_4BYTE: // valid 4 byte descriptors
level++;
*addr_out = table + (table_index << 2);
tbl_entry = m68k_read_memory_32(*addr_out);
type = tbl_entry & M68K_MMU_DF_DT;
if (indirect && (type == 2 || type == 3))
{
level++;
MMULOG(("SHORT INDIRECT DESC: %08x\n", tbl_entry));
*addr_out = tbl_entry & M68K_MMU_DF_IND_ADDR_MASK;
tbl_entry = m68k_read_memory_32(*addr_out);
type = tbl_entry & M68K_MMU_DF_DT;
}
MMULOG(("SHORT DESC: %08x\n", tbl_entry));
table = tbl_entry & M68K_MMU_DF_ADDR_MASK;
if (!m_side_effects_disabled)
{
update_sr(state, type, tbl_entry, fc, 0);
if (!ptest)
{
update_descriptor(state, *addr_out, type, tbl_entry, rw);
}
}
break;
case M68K_MMU_DF_DT_TABLE_8BYTE: // valid 8 byte descriptors
level++;
*addr_out = table + (table_index << 3);
tbl_entry = m68k_read_memory_32(*addr_out);
tbl_entry2 = m68k_read_memory_32((*addr_out) + 4);
type = tbl_entry & M68K_MMU_DF_DT;
if (indirect && (type == 2 || type == 3))
{
level++;
MMULOG(("LONG INDIRECT DESC: %08x%08x\n", tbl_entry, tbl_entry2));
*addr_out = tbl_entry2 & M68K_MMU_DF_IND_ADDR_MASK;
tbl_entry = m68k_read_memory_32(*addr_out);
tbl_entry2 = m68k_read_memory_32(*addr_out);
type = tbl_entry & M68K_MMU_DF_DT;
}
MMULOG(("LONG DESC: %08x %08x\n", tbl_entry, tbl_entry2));
table = tbl_entry2 & M68K_MMU_DF_ADDR_MASK;
if (!m_side_effects_disabled)
{
update_sr(state, type, tbl_entry, fc, 1);
if (!ptest)
{
update_descriptor(state, *addr_out, type, tbl_entry, rw);
}
}
break;
}
if (state->mmu_tmp_sr & M68K_MMU_SR_BUS_ERROR)
{
// Bus error during page table walking is always fatal
resolved = 1;
break;
}
if (!ptest && !m_side_effects_disabled)
{
if (!rw && (state->mmu_tmp_sr & M68K_MMU_SR_WRITE_PROTECT))
{
resolved = 1;
break;
}
if (!(fc & 4) && (state->mmu_tmp_sr & M68K_MMU_SR_SUPERVISOR_ONLY))
{
resolved = 1;
break;
}
}
addr_in <<= indexbits;
pageshift += indexbits;
} while(level < limit && !resolved);
state->mmu_tmp_sr &= 0xfff0;
state->mmu_tmp_sr |= level;
MMULOG(("MMU SR after walk: %04X\n", state->mmu_tmp_sr));
state->mmu_tablewalk = 0;
return resolved;
}
// pmmu_translate_addr_with_fc: perform 68851/68030-style PMMU address translation
//template<bool ptest, bool pload>
uint32 pmmu_translate_addr_with_fc(m68ki_cpu_core *state, uint32 addr_in, uint8 fc, uint16 rw, int limit, int ptest,
int pload)
{
uint32 addr_out = 0;
MMULOG(("%s: addr_in=%08x, fc=%d, ptest=%d, rw=%d, limit=%d, pload=%d\n",
__func__, addr_in, fc, ptest, rw, limit, pload));
state->mmu_tmp_sr = 0;
state->mmu_last_logical_addr = addr_in;
if (pmmu_match_tt(state, addr_in, fc, state->mmu_tt0, rw) ||
pmmu_match_tt(state, addr_in, fc, state->mmu_tt1, rw) ||
fc == 7)
{
return addr_in;
}
if (ptest && limit == 0)
{
pmmu_atc_lookup(state, addr_in, fc, rw, &addr_out, 1);
return addr_out;
}
if (!ptest && !pload && pmmu_atc_lookup(state, addr_in, fc, rw, &addr_out, 0))
{
if ((state->mmu_tmp_sr & M68K_MMU_SR_BUS_ERROR) || (!rw && (state->mmu_tmp_sr & M68K_MMU_SR_WRITE_PROTECT)))
{
MMULOG(("set atc hit buserror: addr_in=%08x, addr_out=%x, rw=%x, fc=%d, sz=%d\n",
addr_in, addr_out, state->mmu_tmp_rw, state->mmu_tmp_fc, state->mmu_tmp_sz));
pmmu_set_buserror(state, addr_in);
}
return addr_out;
}
int type;
uint32 tbl_addr;
// if SRP is enabled and we're in supervisor mode, use it
if ((state->mmu_tc & M68K_MMU_TC_SRE) && (fc & 4))
{
tbl_addr = state->mmu_srp_aptr & M68K_MMU_DF_ADDR_MASK;
type = state->mmu_srp_limit & M68K_MMU_DF_DT;
}
else // else use the CRP
{
tbl_addr = state->mmu_crp_aptr & M68K_MMU_DF_ADDR_MASK;
type = state->mmu_crp_limit & M68K_MMU_DF_DT;
}
if (!pmmu_walk_tables(state, addr_in, type, tbl_addr, fc, limit, rw, &addr_out, ptest))
{
MMULOG(("%s: addr_in=%08x, type=%x, tbl_addr=%x, fc=%d, limit=%x, rw=%x, addr_out=%x, ptest=%d\n",
__func__, addr_in, type, tbl_addr, fc, limit, rw, addr_out, ptest));
fatalerror("Table walk did not resolve\n");
}
if (ptest)
{
return addr_out;
}
if ((state->mmu_tmp_sr & (M68K_MMU_SR_INVALID|M68K_MMU_SR_SUPERVISOR_ONLY)) ||
((state->mmu_tmp_sr & M68K_MMU_SR_WRITE_PROTECT) && !rw))
{
if (!pload)
{
MMULOG(("%s: set buserror (SR %04X)\n", __func__, state->mmu_tmp_sr));
pmmu_set_buserror(state, addr_in);
}
}
// it seems like at least the 68030 sets the M bit in the MMU SR
// if the root descriptor is of PAGE type, so do a logical and
// between RW and the root type
if (!m_side_effects_disabled)
{
pmmu_atc_add(state, addr_in, addr_out, fc, rw && type != 1);
}
MMULOG(("PMMU: [%08x] => [%08x] (SR %04x)\n", addr_in, addr_out, state->mmu_tmp_sr));
return addr_out;
}
// FC bits: 2 = supervisor, 1 = program, 0 = data
// the 68040 is a subset of the 68851 and 68030 PMMUs - the page table sizes are fixed, there is no early termination, etc, etc.
uint32 pmmu_translate_addr_with_fc_040(m68ki_cpu_core *state, uint32 addr_in, uint8 fc, uint8 ptest)
{
uint32 addr_out, tt0, tt1;
addr_out = addr_in;
state->mmu_tmp_sr = 0;
// transparent translation registers are always in force even if the PMMU itself is disabled
// they don't do much in emulation because we never write out of order, but the write-protect and cache control features
// are emulatable, and apparently transparent translation regions skip the page table lookup.
if (fc & 1) // data, use DTT0/DTT1
{
tt0 = state->mmu_dtt0;
tt1 = state->mmu_dtt1;
}
else if (fc & 2) // program, use ITT0/ITT1
{
tt0 = state->mmu_itt0;
tt1 = state->mmu_itt1;
}
else
{
fatalerror("68040: function code %d is neither data nor program!\n", fc & 7);
}
if (tt0 & M68K_MMU_TT_ENABLE)
{
int fcmask[4] = { 4, 4, 0, 0 };
int fcmatch[4] = { 0, 4, 0, 0 };
uint32 mask = (tt0 >> 16) & 0xff;
mask ^= 0xff;
mask <<= 24;
if ((addr_in & mask) == (tt0 & mask) && (fc & fcmask[(tt0 >> 13) & 3]) == fcmatch[(tt0 >> 13) & 3])
{
MMULOG(("TT0 match on address %08x (TT0 = %08x, mask = %08x)\n", addr_in, tt0, mask));
if ((tt0 & 4) && !state->mmu_tmp_rw && !ptest) // write protect?
{
pmmu_set_buserror(state, addr_in);
}
return addr_in;
}
}
if (tt1 & M68K_MMU_TT_ENABLE)
{
static int fcmask[4] = { 4, 4, 0, 0 };
static int fcmatch[4] = { 0, 4, 0, 0 };
uint32 mask = (tt1 >> 16) & 0xff;
mask ^= 0xff;
mask <<= 24;
if ((addr_in & mask) == (tt1 & mask) && (fc & fcmask[(tt1 >> 13) & 3]) == fcmatch[(tt1 >> 13) & 3])
{
MMULOG(("TT1 match on address %08x (TT0 = %08x, mask = %08x)\n", addr_in, tt1, mask));
if ((tt1 & 4) && !state->mmu_tmp_rw && !ptest) // write protect?
{
pmmu_set_buserror(state, addr_in);
}
return addr_in;
}
}
if (state->pmmu_enabled)
{
uint32 root_idx = (addr_in >> 25) & 0x7f;
uint32 ptr_idx = (addr_in >> 18) & 0x7f;
uint32 page_idx, page;
uint32 root_ptr, pointer_ptr, page_ptr;
uint32 root_entry, pointer_entry, page_entry;
// select supervisor or user root pointer
if (fc & 4)
{
root_ptr = state->mmu_srp_aptr + (root_idx<<2);
}
else
{
root_ptr = state->mmu_urp_aptr + (root_idx<<2);
}
// get the root entry
root_entry = m68k_read_memory_32(root_ptr);
// is UDT marked valid?
if (root_entry & 2)
{
// we're accessing through this root entry, so set the U bit
if ((!(root_entry & 0x8)) && (!ptest) && !m_side_effects_disabled)
{
root_entry |= 0x8;
m68k_write_memory_32(root_ptr, root_entry);
}
// PTEST: any write protect bits set in the search tree will set W in SR
if ((ptest) && (root_entry & 4))
{
state->mmu_tmp_sr |= 4;
}
pointer_ptr = (root_entry & ~0x1ff) + (ptr_idx<<2);
pointer_entry = m68k_read_memory_32(pointer_ptr);
// PTEST: any write protect bits set in the search tree will set W in SR
if ((ptest) && (pointer_entry & 4))
{
state->mmu_tmp_sr |= 4;
}
// update U bit on this pointer entry too
if ((!(pointer_entry & 0x8)) && (!ptest) && !m_side_effects_disabled)
{
pointer_entry |= 0x8;
m68k_write_memory_32(pointer_ptr, pointer_entry);
}
MMULOG(("pointer entry = %08x\n", pointer_entry));
// write protected by the root or pointer entries?
if ((((root_entry & 4) && !state->mmu_tmp_rw) || ((pointer_entry & 4) && !state->mmu_tmp_rw)) && !ptest)
{
pmmu_set_buserror(state, addr_in);
return addr_in;
}
// is UDT valid on the pointer entry?
if (!(pointer_entry & 2) && !ptest)
{
logerror("Invalid pointer entry! PC=%x, addr=%x\n", state->ppc, addr_in);
pmmu_set_buserror(state, addr_in);
return addr_in;
}
// (fall out of these ifs into the page lookup below)
}
else // throw an error
{
logerror("Invalid root entry! PC=%x, addr=%x\n", state->ppc, addr_in);
if (!ptest)
{
pmmu_set_buserror(state, addr_in);
}
return addr_in;
}
// now do the page lookup
if (state->mmu_tc & 0x4000) // 8k pages?
{
page_idx = (addr_in >> 13) & 0x1f;
page = addr_in & 0x1fff;
pointer_entry &= ~0x7f;
MMULOG(("8k pages: index %x page %x\n", page_idx, page));
}
else // 4k pages
{
page_idx = (addr_in >> 12) & 0x3f;
page = addr_in & 0xfff;
pointer_entry &= ~0xff;
MMULOG(("4k pages: index %x page %x\n", page_idx, page));
}
page_ptr = pointer_entry + (page_idx<<2);
page_entry = m68k_read_memory_32(page_ptr);
state->mmu_last_page_entry_addr = page_ptr;
MMULOG(("page_entry = %08x\n", page_entry));
// resolve indirect page pointers
while ((page_entry & 3) == 2)
{
page_entry = m68k_read_memory_32(page_entry & ~0x3);
state->mmu_last_page_entry_addr = (page_entry & ~0x3);
}
state->mmu_last_page_entry = page_entry;
// is the page write protected or supervisor protected?
if ((((page_entry & 4) && !state->mmu_tmp_rw) || ((page_entry & 0x80) && !(fc & 4))) && !ptest)
{
pmmu_set_buserror(state, addr_in);
return addr_in;
}
switch (page_entry & 3)
{
case 0: // invalid
MMULOG(("Invalid page entry! PC=%x, addr=%x\n", state->ppc, addr_in));
if (!ptest)
{
pmmu_set_buserror(state, addr_in);
}
return addr_in;
case 1:
case 3: // normal
if (state->mmu_tc & 0x4000) // 8k pages?
{
addr_out = (page_entry & ~0x1fff) | page;
}
else
{
addr_out = (page_entry & ~0xfff) | page;
}
if (!(ptest))
{
page_entry |= 0x8; // always set the U bit
// if we're writing, the M bit comes into play
if (!state->mmu_tmp_rw)
{
page_entry |= 0x10; // set Modified
}
// if these updates resulted in a change, write the entry back where we found it
if (page_entry != state->mmu_last_page_entry && !m_side_effects_disabled)
{
state->mmu_last_page_entry = page_entry;
m68k_write_memory_32(state->mmu_last_page_entry_addr, state->mmu_last_page_entry);
}
}
else
{
// page entry: UR G U1 U0 S CM CM M U W PDT
// SR: B G U1 U0 S CM CM M 0 W T R
state->mmu_tmp_sr |= ((addr_out & ~0xfff) || (page_entry & 0x7f4));
}
break;
case 2: // shouldn't happen
fatalerror("68040: got indirect final page pointer, shouldn't be possible\n");
break;
}
// if (addr_in != addr_out) MMULOG(("040MMU: [%08x] => [%08x]\n", addr_in, addr_out));
}
return addr_out;
}
// pmmu_translate_addr: perform 68851/68030-style PMMU address translation
uint32 pmmu_translate_addr(m68ki_cpu_core *state, uint32 addr_in, uint16 rw)
{
uint32 addr_out;
if (CPU_TYPE_IS_040_PLUS(state->cpu_type))
{
addr_out = pmmu_translate_addr_with_fc_040(state, addr_in, state->mmu_tmp_fc, 0);
}
else
{
addr_out = pmmu_translate_addr_with_fc(state, addr_in, state->mmu_tmp_fc, rw, 7, 0, 0);
MMULOG(("ADDRIN %08X, ADDROUT %08X\n", addr_in, addr_out));
}
return addr_out;
}
int fc_from_modes(m68ki_cpu_core *state, uint16 modes)
{
if ((modes & 0x1f) == 0)
{
return state->sfc;
}
if ((modes & 0x1f) == 1)
{
return state->dfc;
}
if (state->cpu_type & CPU_TYPE_030)
{
// 68030 has 3 bits fc, but 68851 4 bits
if (((modes >> 3) & 3) == 1)
{
return REG_D[modes & 7] & 0x7;
}
if (((modes >> 3) & 3) == 2)
{
return modes & 7;
}
}
else
{
if (((modes >> 3) & 3) == 1)
{
return REG_D[modes & 7] & 0xf;
}
if (modes & 0x10)
{
return modes & 0xf;
}
}
fatalerror("%s: unknown fc mode: 0x%02xn", __func__, modes & 0x1f);
return 0;
}
void m68851_pload(m68ki_cpu_core *state, uint32 ea, uint16 modes)
{
uint32 ltmp = DECODE_EA_32(state, ea);
int fc = fc_from_modes(state, modes);
uint16 rw = !!(modes & 0x200);
MMULOG(("%s: PLOAD%c addr=%08x, fc=%d\n", __func__, rw ? 'R' : 'W', ltmp, fc));
// MC68851 traps if MMU is not enabled, 030 not
if (state->pmmu_enabled || (state->cpu_type & CPU_TYPE_030))
{
if (CPU_TYPE_IS_040_PLUS(state->cpu_type))
{
pmmu_translate_addr_with_fc_040(state, ltmp, fc, 0);
}
else
{
pmmu_translate_addr_with_fc(state, ltmp, fc, rw, 7, 0, 1);
}
}
else
{
MMULOG(("PLOAD with MMU disabled on MC68851\n"));
m68ki_exception_trap(state, 57);
return;
}
}
void m68851_ptest(m68ki_cpu_core *state, uint32 ea, uint16 modes)
{
uint32 v_addr = DECODE_EA_32(state, ea);
uint32 p_addr;
int level = (modes >> 10) & 7;
uint16 rw = !!(modes & 0x200);
int fc = fc_from_modes(state, modes);
MMULOG(("PMMU: PTEST%c (%04X) pc=%08x sp=%08x va=%08x fc=%x level=%x a=%d, areg=%d\n",
rw ? 'R' : 'W', modes, state->ppc, REG_A[7], v_addr, fc, level,
(modes & 0x100) ? 1 : 0, (modes >> 5) & 7));
if (CPU_TYPE_IS_040_PLUS(state->cpu_type))
{
p_addr = pmmu_translate_addr_with_fc_040(state, v_addr, fc, 1);
}
else
{
p_addr = pmmu_translate_addr_with_fc(state, v_addr, fc, rw, level, 1, 0);
}
state->mmu_sr = state->mmu_tmp_sr;