diff --git a/docs/change-log.md b/docs/change-log.md index 06b12ef9b..02b188dc7 100644 --- a/docs/change-log.md +++ b/docs/change-log.md @@ -1,5 +1,13 @@ # Change Log +## v1.0.1 +- Fix crash in `chunk_episodes` of `utils.py` for multi time zone data +- Fix crash in BT Doryab provider when the number of clusters is 2 +- Fix Fitbit multi time zone inference from phone data (simplify) +- Fix missing columns when the input for phone data yield is empty +- Fix wrong date time labels for event segments for multi time zone data (all labels are computed based on a single tz) +- Fix periodic segment crash when there are no segments to assign (only affects wday, mday, qday, or yday) +- Fix crash in Analysis Workflow with new suffix in segments' labels ## v1.0.0 - Add a new [Overview](../setup/overview/) page. - You can [extend](../datastreams/add-new-data-streams/) RAPIDS with your own [data streams](../datastreams/data-streams-introduction/). Data streams are data collected with other sensing apps besides AWARE (like Beiwe, mindLAMP), and stored in other data containers (databases, files) besides MySQL. diff --git a/src/data/datetime/assign_to_multiple_timezones.R b/src/data/datetime/assign_to_multiple_timezones.R index 8b78e47e4..f94cface2 100644 --- a/src/data/datetime/assign_to_multiple_timezones.R +++ b/src/data/datetime/assign_to_multiple_timezones.R @@ -148,7 +148,8 @@ multiple_time_zone_assignment <- function(sensor_data, timezone_parameters, devi mutate(data = map2(data, tzcode, function(nested_data, tz){ nested_data %>% mutate(local_date_time = format(as_datetime(timestamp / 1000, tz=tz), format="%Y-%m-%d %H:%M:%S")) })) %>% - unnest(cols=everything()) + unnest(cols=everything()) %>% + ungroup() } tz_intervals <- buils_tz_intervals(data_tz_codes, device_type) @@ -159,7 +160,8 @@ multiple_time_zone_assignment <- function(sensor_data, timezone_parameters, devi group_by(device_id) %>% nest() %>% mutate(data = map2(data, device_id, assign_tz_code, tz_intervals, device_type)) %>% - unnest(cols = data) + unnest(cols = data) %>% + ungroup() } return(sensor_data) diff --git a/src/data/datetime/readable_datetime.R b/src/data/datetime/readable_datetime.R index 79fc19d2e..1ac7c3f0e 100644 --- a/src/data/datetime/readable_datetime.R +++ b/src/data/datetime/readable_datetime.R @@ -61,8 +61,8 @@ create_mising_temporal_column <- function(data, device_type){ mutate(data = map2(data, local_timezone, function(nested_data, tz){ return(nested_data %>% mutate(timestamp = as.numeric(ymd_hms(local_date_time, tz=tz)) * 1000) %>% drop_na(timestamp)) })) %>% - unnest(cols = everything())) %>% - ungroup() + unnest(cols = everything()) %>% + ungroup()) } else { # For the rest of devices we infere local date time from timestamp if(nrow(data) == 0) @@ -73,8 +73,8 @@ create_mising_temporal_column <- function(data, device_type){ mutate(data = map2(data, local_timezone, function(nested_data, tz){ return(nested_data %>% mutate(local_date_time = format(as_datetime(timestamp / 1000, tz=tz), format="%Y-%m-%d %H:%M:%S")) %>% drop_na(local_date_time) ) })) %>% - unnest(cols = everything())) %>% - ungroup() + unnest(cols = everything()) %>% + ungroup()) } } @@ -120,11 +120,12 @@ readable_datetime <- function(){ most_common_tz <- get_participant_most_common_tz(timezone_parameters$MULTIPLE$TZCODES_FILE, participant_file) # in assign_to_multiple_timezones.R } - output <- create_mising_temporal_column(output, device_type) - output <- split_local_date_time(output) - output <- assign_to_time_segment(output, time_segments, time_segments_type, include_past_periodic_segments, most_common_tz) - output <- filter_wanted_dates(output, participant_file, device_type) - output <- output %>% arrange(timestamp) + output %<>% + create_mising_temporal_column(device_type) %>% + split_local_date_time() %>% + assign_to_time_segment(time_segments, time_segments_type, include_past_periodic_segments, most_common_tz) %>% + filter_wanted_dates(participant_file, device_type) %>% + arrange(timestamp) write_csv(output, snakemake@output[[1]]) }