From 9338f77ae6dc24597e87f0b28e1446afb04e85fd Mon Sep 17 00:00:00 2001 From: Meng Li <34143965+Meng6@users.noreply.github.com> Date: Fri, 19 Nov 2021 13:57:10 -0500 Subject: [PATCH] Update docs for Git Flow section & RAPIDS paper info --- docs/change-log.md | 3 +++ docs/citation.md | 8 ++------ docs/developers/git-flow.md | 8 ++++---- docs/index.md | 2 +- 4 files changed, 10 insertions(+), 11 deletions(-) diff --git a/docs/change-log.md b/docs/change-log.md index a01cd2218..7f1b0d385 100644 --- a/docs/change-log.md +++ b/docs/change-log.md @@ -1,4 +1,7 @@ # Change Log +## v1.7.1 +- Update docs for Git Flow section +- Update RAPIDS paper information ## v1.7.0 - Add firststeptime and laststeptime features to FITBIT_STEPS_INTRADAY RAPIDS provider - Update tests for Fitbit steps intraday features diff --git a/docs/citation.md b/docs/citation.md index e7877a9b6..57a641dea 100644 --- a/docs/citation.md +++ b/docs/citation.md @@ -5,14 +5,10 @@ ## RAPIDS -If you used RAPIDS, please cite [this paper](https://preprints.jmir.org/preprint/23246). +If you used RAPIDS, please cite [this paper](https://www.frontiersin.org/article/10.3389/fdgth.2021.769823). !!! cite "RAPIDS et al. citation" - Vega J, Li M, Aguillera K, Goel N, Joshi E, Durica KC, Kunta AR, Low CA - RAPIDS: Reproducible Analysis Pipeline for Data Streams Collected with Mobile Devices - JMIR Preprints. 18/08/2020:23246 - DOI: 10.2196/preprints.23246 - URL: https://preprints.jmir.org/preprint/23246 + Vega, J., Li, M., Aguillera, K., Goel, N., Joshi, E., Khandekar, K., ... & Low, C. A. (2021). Reproducible Analysis Pipeline for Data Streams (RAPIDS): Open-Source Software to Process Data Collected with Mobile Devices. Frontiers in Digital Health, 168. ## DBDP (all Empatica sensors) diff --git a/docs/developers/git-flow.md b/docs/developers/git-flow.md index 726866592..57db2c451 100644 --- a/docs/developers/git-flow.md +++ b/docs/developers/git-flow.md @@ -127,9 +127,9 @@ git branch -d release/v[NEW_RELEASE] ``` git checkout master git merge --ff-only develop -git push +git push # Unlock the master branch before merging ``` -1. Go to [GitHub](https://github.com/carissalow/rapids/tags) and create a new release based on the newest tag `v[NEW_RELEASE]` (remember to add the change log) +1. Release happens automatically after passing the tests ## Release a Hotfix 1. Pull the latest master @@ -156,6 +156,6 @@ git branch -d hotfix/v[NEW_HOTFIX] ``` git checkout master git merge --ff-only v[NEW_HOTFIX] -git push +git push # Unlock the master branch before merging ``` -1. Go to [GitHub](https://github.com/carissalow/rapids/tags) and create a new release based on the newest tag `v[NEW_HOTFIX]` (remember to add the change log) +1. Release happens automatically after passing the tests diff --git a/docs/index.md b/docs/index.md index ae201807c..a7e5c2d49 100644 --- a/docs/index.md +++ b/docs/index.md @@ -1,6 +1,6 @@ # Welcome to RAPIDS documentation -Reproducible Analysis Pipeline for Data Streams (RAPIDS) allows you to process smartphone and wearable data to [extract](features/feature-introduction.md) and [create](features/add-new-features.md) **behavioral features** (a.k.a. digital biomarkers), [visualize](visualizations/data-quality-visualizations.md) mobile sensor data, and [structure](analysis/complete-workflow-example.md) your analysis into reproducible workflows. +Reproducible Analysis Pipeline for Data Streams (RAPIDS) allows you to process smartphone and wearable data to [extract](features/feature-introduction.md) and [create](features/add-new-features.md) **behavioral features** (a.k.a. digital biomarkers), [visualize](visualizations/data-quality-visualizations.md) mobile sensor data, and [structure](analysis/complete-workflow-example.md) your analysis into reproducible workflows. Check out our [paper](https://www.frontiersin.org/article/10.3389/fdgth.2021.769823)! RAPIDS is open source, documented, multi-platform, modular, tested, and reproducible. At the moment, we support [data streams](datastreams/data-streams-introduction) logged by smartphones, Fitbit wearables, and Empatica wearables (the latter in collaboration with the [DBDP](https://dbdp.org/)).