-
Notifications
You must be signed in to change notification settings - Fork 67
/
evaluator.py
877 lines (700 loc) · 29 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
## Copyright (C) 2024, Nicholas Carlini <[email protected]>.
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
import subprocess
import pickle
import random
import json
import os
import time
import io
import docker
import inspect
import re
import numpy as np
from PIL import Image
import docker_controller
from docker_controller import invoke_docker, DockerJob
## Constants that define which model we're supposed to be using:
LLM = "llm" # The LLM under evaluation
EVAL_LLM = "eval_llm" # A good LLM that can act as a judge
VISION_EVAL_LLM = "vision_eval_llm" # And a good judge for vision tasks
PYTHON_ENV = "python3" # The version of python to use
class Env:
"""
An environment that holds the local variables for each test case.
"""
# The docker object we're running the test in
docker = None
# (Optionally, if in unsafe mode, the fake docker object)
fake_docker_id = None
# The docker container we're running the tests in
container = None
# A DockerJob object, if the test case requires it.
# These objects allow the test to interact with stdin/out
# of a process running in the docker container and must be
# persistant across multiple classes in the test case.
docker_job = None
class Reason:
"""
A class to keep track of the solution path of a test.
"""
def __init__(self, node, children):
self.node = node
self.children = children
def __repr__(self):
return repr((self.node, self.children))
class Node:
"""
A node forms the operations in the computation graph for evaluating a test case;
the most important object in this file. A test case might look like
Node1 >> Node2 >> (Node3 & Node4)
Each of these operators that connects nodes return a new node. So this graph
would be equivalent to writing:
ThenNode(ThenNode(Node1, Node2), AndNode(Node3, Node4))
Once the computation graph has been constructed, evaluation is performed by
calling __call__ on the root node, that then passes off the evalaution process
as defined by each of the node types.
"""
def __init__(self, runner):
"""
Many sub-classes take a single argument, the runner, which is a function
that should be executed for performing this node's computation.
"""
self.runner = runner
def setup(self, env, conv, llm, eval_llm, vision_eval_llm):
"""
Once the graph has been constructed, before running __call__ to evaluate
the test case, we run setup() on each of the nodes to pass all the
necessary context.
"""
self.env = env
self.conv = conv
self.llm = llm
self.eval_llm = eval_llm
self.vision_eval_llm = vision_eval_llm
def __call__(self, orig_output=""):
"""
Evaluate the test case, starting at this node. This is the main entry
point for the evaluation process.
Returns two arguments:
1. The output of the current node that should be passed to the next node.
2. A Reason object that explains how the output was generated for debugging.
"""
raise NotImplementedError()
def __rshift__(self, other_node):
"""
Add the >> operator, which creates a ThenNode.
Wrap any strings in a StringNode first, to allow for code like
SetupNode >> "command to run" >> LLMRunNode
"""
if isinstance(other_node, str):
other_node = StringNode(other_node)
return ThenNode(self, other_node)
def __rrshift__(self, other_node):
"""
If a string is the first node, we need to special case the
rrshift operator, since we can't override the string class.
Allows the (very common) pattern of
"command to run" >> LLMRunNode
"""
if isinstance(other_node, str):
other_node = StringNode(other_node)
return ThenNode(other_node, self)
def __and__(self, other_node):
return AndNode(self, other_node)
def __or__(self, other_node):
return OrNode(self, other_node)
def __invert__(self):
return NotNode(self)
class StringNode(Node):
def __init__(self, string):
"""
A boring node, just returns the string.
"""
self.string = string
def __call__(self, orig_output=""):
"""
Just pass whatever the provided constant string is to the next node.
"""
yield self.string, Reason(type(self), self.string)
class ThenNode(Node):
"""
Perform two operations in sequence. The output of node1 is passed to node2.
"""
def __init__(self, node1, node2):
self.node1 = node1
self.node2 = node2
def setup(self, env, conv, llm, eval_llm, vision_eval_llm):
super().setup(env, conv, llm, eval_llm, vision_eval_llm)
self.node1.setup(env, conv, llm, eval_llm, vision_eval_llm)
self.node2.setup(env=env, conv=conv, llm=llm, eval_llm=eval_llm, vision_eval_llm=vision_eval_llm)
def __call__(self, orig_output=None):
for output1, response1 in self.node1(orig_output):
for output2, response2 in self.node2(output1):
yield output2, Reason(type(self), (response1, response2))
class AndNode(ThenNode):
"""
An evaluation node that returns true if both outputs are true.
"""
def __init__(self, node1, node2):
self.node1 = node1
self.node2 = node2
def __call__(self, orig_output):
for output1, txt1 in self.node1(orig_output):
for output2, txt2 in self.node2(orig_output):
yield output1 and output2, Reason(type(self), (txt1, txt2, output1 and output2))
class OrNode(ThenNode):
"""
An evaluation node that returns true if either outputs are true.
"""
def __init__(self, node1, node2):
self.node1 = node1
self.node2 = node2
def __call__(self, orig_output):
for output1, txt1 in self.node1(orig_output):
for output2, txt2 in self.node2(orig_output):
yield output1 or output2, Reason(type(self), (txt1, txt2, output1 or output2))
class NotNode(Node):
"""
An evaluation node that negates the prior answer.
"""
def __init__(self, node1):
self.node1 = node1
def setup(self, env, conv, llm, eval_llm, vision_eval_llm):
super().setup(env, conv, llm, eval_llm, vision_eval_llm)
self.node1.setup(env, conv, llm, eval_llm, vision_eval_llm)
def __call__(self, orig_output):
for output1, txt1 in self.node1(orig_output):
yield not output1, Reason(type(self), [txt1, not output1])
class PyFunc(Node):
"""
A node that just runs a python function on the prior result.
If the code crashes then just return an error.
"""
def __call__(self, x):
try:
out = self.runner(x)
if type(out) == tuple:
ok, log = out
return [(ok, Reason(type(self), (log, ok)))]
else:
return [(out, Reason(type(self), ("", out)))]
except:
return [("", Reason(type(self), ["Error", False]))]
class Echo(Node):
"""
A no-op node that helps debug test cases by printing whatever's being
passed along the pipe. Kind of like the Unix tee command.
"""
def __init__(self):
pass
def __call__(self, x):
print('ECHOING:', x)
yield x, Reason(type(self), None)
class Setup(Node):
"""
A node that starts up a new Docker environment with a specific setup file.
Even though the argument is a method, this function needs to be able to
extract the string representation of that function so it can be executed
in the context of the docker environment.
"""
def __call__(self, x):
docker_controller.setup_docker(self.env)
code = inspect.getsource(self.runner)
to_invoke = self.runner.__name__
code = code + f"\n\n{to_invoke}()"
out = invoke_docker(self.env, {"setup.py": code.encode()}, [PYTHON_ENV, "setup.py"])
return [(out, Reason(type(self), None))]
class PyEvaluator(Node):
"""
A node that runs a python program within the docker environment to judge whether
or not the test case is solved.
Even though the argument is a method, this function needs to be able to
extract the string representation of that function so it can be executed
in the context of the docker environment.
"""
def __call__(self, x):
code = inspect.getsource(self.runner)
to_invoke = self.runner.__name__
code = code + f"\n\nprint('final: ' + str({to_invoke}()))"
out = invoke_docker(self.env, {"check.py": code.encode()}, [PYTHON_ENV, "check.py"])
return [("final: True" in out, Reason(type(self), [out, "final: True" in out]))]
class SubstringEvaluator(Node):
"""
An evaluation node that checks if a substring is in the output.
"""
def __init__(self, substr, lower=False):
self.substr = substr
self.lower = lower
def __call__(self, output):
if self.lower:
cond = self.substr.lower() in output.lower()
else:
cond = self.substr in output
if cond:
yield True, Reason(type(self), [self.substr, True])
else:
yield False, Reason(type(self), [self.substr, False])
class RegexEvaluator(Node):
"""
An evaluation node that checks if a regex pattern matches the output.
"""
def __init__(self, pattern, ignore_case=False):
self.pattern = pattern
self.ignore_case = ignore_case
def __call__(self, output):
import re
flags = re.IGNORECASE if self.ignore_case else 0
match = re.search(self.pattern, output, flags)
if match:
yield True, Reason(type(self), [self.pattern, True])
else:
yield False, Reason(type(self), [self.pattern, False])
class ContainsIntEvaluator(Node):
"""
An evaluation node that checks if a given integer is in the output.
"""
def __init__(self, num):
self.num = num
def __call__(self, output):
all_integers = re.findall(r'-?[\d,]*\d+\.?\d*', output)
all_integers = [x.replace(",", "") for x in all_integers]
if str(self.num) in all_integers:
yield True, Reason(type(self), [self.num, True])
else:
yield False, Reason(type(self), [self.num, False])
class EqualEvaluator(Node):
"""
An evaluation node that checks if the output is equal to a given string.
"""
def __init__(self, goal):
self.goal = goal
def __call__(self, output):
if self.goal == output:
yield True, Reason(type(self), [self.goal, True])
else:
yield False, Reason(type(self), [self.goal, False])
class UntilDone(Node):
"""
A node that will loop a specific body node until the condition returns true and it's finished.
This node is useful when you want a model to, e.g., iterative interact
with a sqlite database until it's completed some task.
"""
def __init__(self, cond, body, max_iters=100):
self.cond = cond
self.body = body
self.max_iters = max_iters
def setup(self, env, conv, llm, eval_llm, vision_eval_llm):
super().setup(env, conv, llm, eval_llm, vision_eval_llm)
self.cond.setup(env, conv, llm, eval_llm, vision_eval_llm)
self.body.setup(env, conv, llm, eval_llm, vision_eval_llm)
def __call__(self, orig_output=None):
log = []
for i in range(self.max_iters):
for output, txt in self.cond(orig_output):
if output:
yield orig_output, Reason(type(self), log)
return
orig_output, partial = next(self.body(orig_output))
log.append(partial)
yield orig_output, Reason(type(self), log)
class ExtractJSON(Node):
"""
A node that extracts a JSON object from the response.
Usually you can just extract the json blob out of the response,
but if the response contains multiple possible JSON blobs,
then this node queries the model again asking it for just the JSON.
"""
def __init__(self):
pass
def try_extract(self, output):
output = output.replace("```json", "```")
if "```" in output:
yield output.split("```")[1]
out1 = "\n".join(output.split("```")[1::2])
yield out1
else:
yield output
def __call__(self, orig_output):
if orig_output.count("```") == 2:
for maybe in self.try_extract(orig_output):
yield maybe, Reason(type(self), [maybe])
else:
output = self.llm("Take the below answer to my question asking for a JSON output and just return the JSON object directly, with no other description, so I can copy it into an editor directly:\n" + orig_output)
for maybe in self.try_extract(output):
yield maybe, Reason(type(self), [maybe])
class ExtractCode(Node):
"""
A node that extracts code from the response
Usually you can just extract the code out of the response,
but if the response contains multiple possible code objects,
then this node queries the model again asking it for just the code.
"""
def __init__(self, keep_main=False, postfix="", manual=None, lang=None):
self.keep_main = keep_main
self.postfix = postfix
self.manual = manual
self.lang = lang
def try_extract(self, output):
output = re.sub('```[a-z]*', '```', output)
if "```" in output:
ans = output.split("```")[1] + "\n" + self.postfix
else:
ans = output + "\n" + self.postfix
yield ans
def __call__(self, orig_output):
if orig_output.count("```") == 2:
for maybe in self.try_extract(orig_output):
yield maybe, Reason(type(self), maybe)
return
language = ""
if self.lang is not None:
language = f"(in {self.lang})"
if self.manual is not None:
output = self.llm(self.manual.replace("<A>", orig_output))
elif self.keep_main:
assert self.postfix == ""
output = self.llm(f"Take the below answer to my programming question {language} and return just the complete code in a single file so I can copy and paste it into an editor and directly run it. Include any header and main necessary so I can run it by copying this one file. DO NOT MODIFY THE CODE OR WRITE NEW CODE. Here is the code: \n" + orig_output)
else:
output = self.llm(f"Take the below answer to my programming question {language} and return just the complete code in a single file so I can copy and paste it into an editor and directly run it. Remove any test cases or example code after the function definition. Remove any main function. I will write those myself. Do include header imports. DO NOT MODIFY THE CODE OR WRITE NEW CODE. Here is the code: \n" + orig_output + ("\nI will be running this code with the following helper functions:\n" + self.postfix if self.postfix else ""))
for maybe in self.try_extract(output):
yield maybe, Reason(type(self), maybe)
class MakeFile(Node):
"""
A node that makes a new file within the docker environment.
"""
def __init__(self, name):
self.name = name
def __call__(self, code):
out = invoke_docker(self.env, {self.name: code.encode()}, ["echo"])
yield out, Reason(type(self), (code, out))
class MakeFilesFromJSON(Node):
"""
A node that makes a new file within the docker environment.
"""
def __init__(self):
pass
def __call__(self, json_str):
try:
json_obj = json.loads(json_str)
except:
json_obj = {}
for k in json_obj.keys():
if not isinstance(json_obj[k], bytes):
json_obj[k] = json_obj[k].encode()
out = invoke_docker(self.env, json_obj, ["echo"])
yield out, Reason(type(self), (json_str, out))
class PythonRun(Node):
"""
A node that runs the output from the prior command as a python function.
Optionally append a set of test cases to the code that's been provided.
"""
def __init__(self, test_case="", out_bytes=False):
self.test_case = test_case
self.out_bytes = out_bytes
def __call__(self, code):
code = code + "\n\n" + self.test_case
out = invoke_docker(self.env, {"main.py": code.encode()}, [PYTHON_ENV, "main.py"], out_bytes=self.out_bytes)
yield out, Reason(type(self), (code, out))
class SQLRun(Node):
"""
A node that runs the output from the prior command as a sqlite function.
"""
def __init__(self):
pass
def __call__(self, code):
out = invoke_docker(self.env, {"run.sql": code.encode()}, ["sqlite3", "-init", "run.sql", "database.db", ".exit"])
yield out, Reason(type(self), (code, out))
class BashRun(Node):
"""
A node that runs the output from the prior command as a bash script.
"""
def __init__(self, test_case="", args=[]):
self.test_case = test_case
self.args = args
def __call__(self, code):
code = code + "\n\n" + self.test_case
out = invoke_docker(self.env, {"main.sh": code.encode()}, ["bash", "main.sh", *self.args])
yield out, Reason(type(self), (code, out))
class TerminalRun(Node):
"""
A node that directly runs a command line argument in the terminal.
"""
def __init__(self):
return
def __call__(self, code):
if code:
out = invoke_docker(self.env, {"main.sh": code.encode()}, ["bash", "main.sh"])
else:
out = ""
yield out, Reason(type(self), (code, out))
class RustRun(Node):
"""
A node that compiles and runs the output Rust code from the prior command.
Optionally append a set of test cases to the code that's been provided.
"""
def __init__(self, test_case=""):
self.test_case = test_case
def __call__(self, code):
if 'fn main' in code and 'fn main' in self.test_case:
code = code.replace('fn main', 'fn __delete_this__main')
code = code + "\n\n" + self.test_case
out = invoke_docker(self.env, {"main.rs": code.encode(),
"main.sh": "rustc -o a.out main.rs\n./a.out".encode()},
["bash", "main.sh"])
yield out, Reason(type(self), (code, out))
class CRun(Node):
"""
A node that runs the output from the prior command as a c function.
Optionally append a set of test cases to the code that's been provided.
"""
def __init__(self, test_case="", out_bytes=False, gccflags="", argv=""):
self.test_case = test_case
self.out_bytes = out_bytes
self.gccflags = gccflags
self.argv = argv
def __call__(self, code):
if 'int main' in code and 'int main' in self.test_case:
code = code.replace('int main', 'int __delete_this__main')
code = code + "\n\n" + self.test_case
out = invoke_docker(self.env, {"main.c": code.encode(),
"main.sh": f"gcc -o a.out main.c -lm {self.gccflags}\n./a.out {self.argv}".encode()},
["bash", "main.sh"], out_bytes=self.out_bytes)
yield out, Reason(type(self), (code, out))
class CppRun(Node):
"""
A node that runs the output from the prior command as a c++ function.
Optionally append a set of test cases to the code that's been provided.
"""
def __init__(self, test_case="", out_bytes=False):
self.test_case = test_case
self.out_bytes = out_bytes
def __call__(self, code):
if 'int main' in code and 'int main' in self.test_case:
code = code.replace('int main', 'int __delete_this__main')
code = code + "\n\n" + self.test_case
out = invoke_docker(self.env, {"main.cpp": code.encode(),
"main.sh": "g++ -o a.out main.cpp -lm\n./a.out".encode()},
["bash", "main.sh"], out_bytes=self.out_bytes)
yield out, Reason(type(self), (code, out))
class StartDockerJob(Node):
"""
Start a new process within the docker container that's termainl interactive.
This lets us test models that expect to be able to interface with other pieces
of software by connecting the llm to stdin and stdout, sending data to the
program and then reading the output back.
"""
def __init__(self, command, eos_string):
self.command = command
self.eos_string = eos_string
def __call__(self, text):
self.env.docker_job = DockerJob(self.env.container.id if 'id' in dir(self.env.container) else self.env.container, self.eos_string)
out = self.env.docker_job(self.command)
yield out, Reason(type(self), (text, out))
class SendStdoutReceiveStdin(Node):
"""
This node takes a given piece of text and sends it to the stdin of whatever
the current running DockerJob is. It then waits for the running process to handle
this input, and returns the output that the DockerJob returned from stdout.
"""
def __init__(self):
pass
def __call__(self, text):
out = self.env.docker_job(text)
yield out, Reason(type(self), (out,))
class LLMRun(Node):
"""
A node to invoke a language model on any given text.
This is the core function that allows us to evaluate the capabilities of any model.
"""
def __init__(self, check_prompt="<A>", llm=LLM, json=False):
self.check_prompt = check_prompt
self.which_llm = llm
self.json = json
def __call__(self, output):
llm = getattr(self, self.which_llm)
to_send = self.check_prompt.replace("<A>", output)
out = llm(to_send, json=self.json)
yield out, Reason(type(self), (to_send, out))
class LLMConversation(Node):
"""
A node to invoke a language model on any given text, but keeps state.
This node allows us to send messages that refer to prior messages, whereas
LLMRun is just a stateless operation.
"""
def __init__(self, check_prompt="<A>"):
self.check_prompt = check_prompt
def __call__(self, output):
to_send = self.check_prompt.replace("<A>", output)
out = self.conv(to_send)
yield out, Reason(type(self), (to_send, out))
class SeleniumDraw(Node):
"""
A node that creates a new HTML page, renders it in chrome, and then
captures the output with Selenium.
"""
def __init__(self):
pass
def __call__(self, code):
try:
#if 1:
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
#chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
r = random.randint(0, 1000000)
open("/tmp/a%r.html"%r, "w").write(code)
url = 'file:///tmp/a%d.html'%r
browser = webdriver.Chrome(options=chrome_options)
browser.get(url)
time.sleep(2)
screenshot_path = '/tmp/a%d.png'%r
browser.save_screenshot(screenshot_path)
browser.quit()
time.sleep(1)
img = Image.open(screenshot_path).convert('RGB')
# get png data
img_data = io.BytesIO()
img.save(img_data, format="PNG")
img_data.seek(0)
img_data = img_data.read()
yield img_data, Reason(type(self), img_data)
#try:
pass
except:
yield b"", Reason(type(self), b"")
class JSONSubsetEvaluator(Node):
def __init__(self, goal):
self.goal = goal
def check(self, goal, output):
if isinstance(goal, dict) and isinstance(output, dict):
# Iterate over all key-value pairs in the goal dictionary
for key, value in goal.items():
# Check if the key is present in the output
if key not in output:
return False
# If the value is a dict or list, recursively check
if isinstance(value, (dict, list)):
if not self.check(value, output[key]):
return False
# Otherwise, check if the value matches
elif output[key] != value:
return False
elif isinstance(goal, list) and isinstance(output, list):
# Check each element in the goal list
for item in goal:
if item not in output:
return False, Reason(self, ["Item not present", item])
else:
# Not a dict or list, so check if the values are equal
if goal == output:
return True
else:
return False
# todo better error message
return True
def __call__(self, output):
try:
output = json.loads(output)
except:
yield False, Reason(type(self), [self.goal, False])
return
ok = self.check(self.goal, output)
yield ok, Reason(type(self), [self.goal, ok])
class LLMVisionRun(Node):
"""
A node to evalaute an image output from a prior operation. Invokes the
vision evaluation model.
"""
def __init__(self, check_prompt="<A>", llm=VISION_EVAL_LLM):
self.check_prompt = check_prompt
self.which_llm = llm
def __call__(self, output):
llm = getattr(self, self.which_llm)
try:
if isinstance(output, bytes):
img = Image.open(io.BytesIO(output))
else:
img = output
out = llm(self.check_prompt, add_image=img, max_tokens=512)
except Exception as e:
out = str(e)
yield out, Reason(type(self), (self.check_prompt, out))
class Conversation:
"""
An object that keeps track of the conversation history between the
model and the test case prior questions/steps.
"""
def __init__(self, llm,preample = ''):
self.llm = llm
self.history = []
self.preample = preample
def __call__(self, msg):
if len(self.history)==0:
msg = self.preample + msg
self.history.append(msg)
output = self.llm(self.history)
self.history.append(output)
return output
def __repr__(self):
return "Conversation(" + repr(self.history) + ")"
def run_test(test):
"""
A helper function to run just one specific test case.
Used to debug tests by running each file directly.
"""
from llm import llm, eval_llm, vision_eval_llm
env = Env()
test.setup(env, Conversation(llm), llm, eval_llm, vision_eval_llm)
ok = False
for success, output in test():
if success:
ok = True
break
import create_results_html
fmt = create_results_html.format_markdown(output)
while '\n\n' in fmt:
fmt = fmt.replace('\n\n', '\n')
fmt = fmt.replace("\n#", "\n\n#")
print(fmt)
if env.container:
docker_controller.async_kill_container(env.docker, env.container)
return ok
def make_python_test(q_and_a, header=""):
qs = [header]
for q, a in q_and_a:
qs.append(f"""
answer = {q}
expected = {a}
assert answer == expected, f'Wrong answer; got {{answer}} instead of {{expected}}'""")
qs.append("print('All tests passed')")
return "\n".join(qs), "All tests passed"
def make_c_test(q_and_a, header="", extra_methods=""):
qs = []
qs.append("#include<stdio.h>\n#include<stdlib.h>\n" + extra_methods + "\nint main() {")
qs.append(header)
for q, a in q_and_a:
qs.append(f"""
int answer = {q};
int expected = {a};
if (answer != expected) {{
printf("Wrong answer; got %d instead of %d.\\n", answer, expected);
exit(1);
}}""")
qs.append('printf("All tests passed\\n");')
qs.append("}");
return "\n".join(qs), "All tests passed"