-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
240 lines (198 loc) · 8.06 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
from torch import Tensor
from torch.nn import functional as F
from torch_geometric.data import HeteroData
from torch_geometric.nn import MLP as tMLP
from torch_geometric.nn import GATv2Conv, GINConv, SAGEConv, to_hetero
from motive import get_counts
from utils.utils import PathLocator
class GNN(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.conv1 = SAGEConv(hidden_channels, hidden_channels, normalize=True)
self.conv2 = SAGEConv(hidden_channels, hidden_channels, normalize=True)
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
# Define a 2-layer GNN computation graph.
h1 = F.leaky_relu(self.conv1(x, edge_index))
h2 = self.conv2(h1, edge_index)
h3 = h1 + h2
return h3
class GIN(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.mlp1 = tMLP([hidden_channels, hidden_channels, hidden_channels])
self.mlp2 = tMLP([hidden_channels, hidden_channels, hidden_channels])
self.conv1 = GINConv(self.mlp1)
self.conv2 = GINConv(self.mlp2)
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
# Define a 2-layer GNN computation graph.
h1 = F.leaky_relu(self.conv1(x, edge_index))
h2 = self.conv2(h1, edge_index)
h3 = h1 + h2
return h3
class GAT(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.conv1 = GATv2Conv(
hidden_channels,
hidden_channels // 2,
heads=2,
add_self_loops=False,
dropout=0.3,
)
self.conv2 = GATv2Conv(
hidden_channels,
hidden_channels // 2,
heads=2,
add_self_loops=False,
dropout=0.3,
)
def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
# Define a 2-layer GNN computation graph.
h1 = F.leaky_relu(self.conv1(x, edge_index))
h2 = self.conv2(h1, edge_index)
h3 = h1 + h2
return h3
# Our final classifier applies the dot-product between source and destination
# node embeddings to derive edge-level predictions:
class Classifier(torch.nn.Module):
def forward(
self, x_source: Tensor, x_target: Tensor, edge_label_index: Tensor
) -> Tensor:
# Convert node embeddings to edge-level representations:
edge_feat_source = x_source[edge_label_index[0]]
edge_feat_target = x_target[edge_label_index[1]]
# Apply dot-product to get a prediction per supervision edge:
return (edge_feat_source * edge_feat_target).sum(dim=-1)
class GraphSAGE_Embs(torch.nn.Module):
def __init__(
self, hidden_channels, num_source_nodes, num_target_nodes, data, GNNClass
):
super().__init__()
# embedding matrices for sources and targets:
self.source_emb = torch.nn.Embedding(num_source_nodes, hidden_channels)
self.target_emb = torch.nn.Embedding(num_target_nodes, hidden_channels)
# Instantiate homogeneous GNN:
self.gnn = GNNClass(hidden_channels)
# Convert GNN model into a heterogeneous variant:
metadata = data.metadata()
self.gnn = to_hetero(self.gnn, metadata=metadata)
# Instantiate one of the classifier classes
self.classifier = Classifier()
def forward(self, data: HeteroData) -> Tensor:
x_dict = {
"source": self.source_emb(data["source"].node_id),
"target": self.target_emb(data["target"].node_id),
}
# `x_dict` holds feature matrices of all node types
# `edge_index_dict` holds all edge indices of all edge types
x_dict = self.gnn(x_dict, data.edge_index_dict)
pred = self.classifier(
x_dict["source"],
x_dict["target"],
data["source", "binds", "target"].edge_label_index,
)
return pred
# Child of our GNN model that initializes embedding weights with
# cp features but freezes embeddings throughout training
class GraphSAGE_CP(GraphSAGE_Embs):
def __init__(
self, hidden_channels, num_source_nodes, num_target_nodes, data, GNNClass
):
super().__init__(
hidden_channels, num_source_nodes, num_target_nodes, data, GNNClass
)
src_weights = data["source"].x
tgt_weights = data["target"].x
source_size = data["source"].x.shape[1]
target_size = data["target"].x.shape[1]
self.source_emb = torch.nn.Sequential(
torch.nn.Embedding(
num_source_nodes, source_size, _weight=src_weights, _freeze=True
),
torch.nn.Linear(source_size, hidden_channels),
torch.nn.ReLU(),
)
self.target_emb = torch.nn.Sequential(
torch.nn.Embedding(
num_target_nodes, target_size, _weight=tgt_weights, _freeze=True
),
torch.nn.Linear(target_size, hidden_channels),
torch.nn.ReLU(),
)
class MLP(torch.nn.Module):
def __init__(self, source_size, target_size, hidden_size):
super().__init__()
self.dense_source = torch.nn.Linear(source_size, hidden_size)
self.dense_target = torch.nn.Linear(target_size, hidden_size)
source_size = target_size = hidden_size
self.bilinear = torch.nn.Bilinear(source_size, target_size, 1)
def forward(self, data: HeteroData) -> Tensor:
source_ix = data["binds"]["edge_label_index"][0]
target_ix = data["binds"]["edge_label_index"][1]
x_source = data["source"].x[source_ix]
x_target = data["target"].x[target_ix]
h_source = F.relu(self.dense_source(x_source))
h_target = F.relu(self.dense_target(x_target))
logits = self.bilinear(h_source, h_target)
return torch.squeeze(logits)
class Bilinear(torch.nn.Module):
def __init__(self, source_size, target_size):
super().__init__()
self.bilinear = torch.nn.Bilinear(source_size, target_size, 1)
def forward(self, data: HeteroData) -> Tensor:
source_ix = data["binds"]["edge_label_index"][0]
target_ix = data["binds"]["edge_label_index"][1]
x_source = data["source"].x[source_ix]
x_target = data["target"].x[target_ix]
logits = self.bilinear(x_source, x_target)
return torch.squeeze(logits)
class Cosine(torch.nn.Module):
def __init__(self):
super().__init__()
self.cos = torch.nn.CosineSimilarity(dim=1, eps=1e-08)
def forward(self, data: HeteroData) -> Tensor:
source_ix = data["binds"]["edge_label_index"][0]
target_ix = data["binds"]["edge_label_index"][1]
x_source = data["source"].x[source_ix]
x_target = data["target"].x[target_ix]
logits = self.cos(x_source, x_target)
return logits
def create_model(locator: PathLocator, data):
model_name = locator.config["model_name"]
num_sources, num_targets, num_features = get_counts(data)
if model_name in ("gnn", "gat", "gin"):
GNNClass = {"gnn": GNN, "gat": GAT, "gin": GIN}.get(model_name)
initialization = locator.config["initialization"]
if initialization == "cp":
model = GraphSAGE_CP(
int(locator.config["hidden_channels"]),
num_sources,
num_targets,
data,
GNNClass,
)
elif initialization == "embs":
model = GraphSAGE_Embs(
int(locator.config["hidden_channels"]),
num_sources,
num_targets,
data,
GNNClass,
)
elif model_name == "mlp":
model = MLP(
num_features["source"],
num_features["target"],
hidden_size=int(locator.config["hidden_channels"]),
)
elif model_name == "bilinear":
model = Bilinear(
num_features["source"],
num_features["target"],
)
elif model_name == "cosine":
model = Cosine()
else:
raise ValueError(f"Invalid model_name: {model_name}")
return model