diff --git a/instructors/3-raster-slides.qmd b/instructors/3-raster-slides.qmd index 2d5b94d4..cf15b665 100644 --- a/instructors/3-raster-slides.qmd +++ b/instructors/3-raster-slides.qmd @@ -44,7 +44,7 @@ knitr::opts_chunk$set( ![](fig/tudlib-green.png){fig-align="center"} -## Challenge 1: `r emo::ji("clock")` **2 mins** +## Challenge 1: **2 mins** Use `describe()` to determine the following about the `tud-dsm-hill.tif` file: @@ -61,7 +61,7 @@ countdown::countdown(minutes = 2) # Plotting raster data -## Challenge 2: `r emo::ji("clock")` **5 mins** +## Challenge 2: **5 mins** Create a plot of the TU Delft Digital Surface Model (`DSM_TUD`) that has: @@ -76,7 +76,7 @@ countdown::countdown(minutes = 5) # Reprojecting raster data -## Challenge 3: `r emo::ji("clock")` **2 mins** +## Challenge 3: **2 mins** View the CRS for each of these two datasets. What projection does each use? @@ -88,7 +88,7 @@ countdown::countdown(minutes = 2) # Raster calculations -## Challenge 4: `r emo::ji("clock")` **10 mins** +## Challenge 4: **10 mins** It’s often a good idea to explore the range of values in a raster dataset just like we might explore a dataset that we collected in the field.