forked from MLRWP/claim_sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgabrielli_wuthrich.R
195 lines (165 loc) · 6.36 KB
/
gabrielli_wuthrich.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Library support
library(data.table)
library(ggplot2)
library(scales)
# Kuo package
# if (!require(simulationmachine)) {
# remotes::install_github("kasaai/simulationmachine")
library(simulationmachine)
# }
tab_gabrielli_wutrich <- tabPanel(
'Gabrielli Wütrich',
sidebarLayout(
sidebarPanel(
selectInput(
"num_claims",
"Choose number of claims:",
choices = c(100, 500, 1000, 3000, 5000),
selected = 3000
),
selectInput(
"sd_claim",
"Choose sd of claim severity:",
choices = c(0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 4),
selected = 0.3),
selectInput(
"sd_recovery",
"Choose sd of subrogation recoveries:",
choices = c(0,0.1,0.3, 1,2,4),
selected = 0.3),
numericInput(
"seed",
"Enter a random seed:",
value = 1,
min = 1,
max = 10^9),
),
mainPanel(
h2("Paid plot"),
plotOutput("plt_triangle_paid", width = "60%"),
# tableOutput("paidDT"),
# "Detailed data",
# tableOutput("detailedDT")
h2("Paid LOB plot"),
plotOutput("plt_lob_paid", width = "60%"),
h2("Loss distribution by age group"),
plotOutput("plt_age_box", width = "60%"),
h2("Log(claim count) by reporting delay"),
plotOutput("plt_report_delay", width = "60%")
)
)
)
expr_gabrielli_wutrich <- quote({
obj_claim_data <- reactiveVal(NULL)
tbl_paid_triangle <- reactiveVal(NULL)
tbl_records <- reactiveVal(NULL)
# req(input$seed) #stops app crashing if user clears seed input box!
observe({
obj_claim_data(getTriangleData(
num_claims = as.numeric(input$num_claims),
sd_claim = as.numeric(input$sd_claim),
sd_recovery = as.numeric(input$sd_recovery),
seed = as.numeric(input$seed)
))
tbl_paid_triangle(obj_claim_data()$paid_triangle_data)
tbl_records(obj_claim_data()$records)
})
output$plt_triangle_paid <- renderPlot({
tbl_tri <- tbl_paid_triangle()
#convert to cumulative paid
tbl_tri$cumulative_paid <- tbl_tri[, .(paid = cumsum(paid)), by = c("accident_year")]$paid
#cumulative paid development by accident year
ggplot(data = tbl_tri[accident_year + development_year <= 2005],
aes(x = development_year, y = cumulative_paid, colour = as.factor(accident_year))) +
geom_point() +
geom_line() +
scale_y_continuous(labels = comma) +
ggtitle("Cumulative paid by accident year") +
theme(
legend.title = element_blank(),
axis.title.y = element_blank(),
plot.caption = element_text(hjust = 0, face = "italic")) +
scale_colour_viridis_d() +
theme_bw() +
labs(x = "Development year", y = "Cumulative paid", colour = "Accident year")
})
output$plt_lob_paid <- renderPlot({
tbl_rec <- tbl_records()
tbl_rec <- tbl_rec[,.(paid_loss = sum(paid_loss)), by = c("accident_year", "development_year", "lob")]
setkey(tbl_rec, lob, accident_year, development_year)
tbl_rec$cumulative_paid <- tbl_rec[,.(paid = cumsum(paid_loss)), by = c("accident_year","lob")]$paid
#cumulative paid development by accident year
ggplot(
data = tbl_rec[accident_year + development_year <= 2005],
aes(x = development_year, y = cumulative_paid, colour = as.factor(accident_year))) +
geom_point() +
geom_line() +
scale_y_continuous(labels = comma) +
ggtitle("Cumulative paid by accident year for lob 1 - 4") +
theme(
legend.title = element_blank(),
axis.title.y = element_blank(),
plot.caption = element_text(hjust = 0, face = "italic")) +
scale_colour_viridis_d() +
theme_bw() +
labs(x = "Development year", y = "Cumulative paid", colour = "Accident year") +
facet_wrap(.~lob)
})
output$plt_age_box <- renderPlot({
tbl_rec <- tbl_records()
tbl_rec <- tbl_rec[,.(paid_loss = sum(paid_loss)), by = c("claim_id", "age")]
ggplot(tbl_rec[!paid_loss == 0], aes(x = log(paid_loss), fill = cut(age, breaks = c(0,20,30,40,50,60,70,100)))) +
geom_boxplot()
})
output$plt_report_delay <- renderPlot({
tbl_rec <- tbl_records()
tbl_rec <- tbl_rec[,.(report_delay = max(report_delay)), by = c("claim_id")][,.N, by = report_delay]
ggplot(tbl_rec, aes(x = report_delay, y = log(N))) +
geom_bar(stat = "identity")
})
})
getTriangleData <- function(
num_claims = 2000,
lob_distribution = c(0.25, 0.25, 0.25, 0.25),
inflation = c(0.03, 0.01, 0.01, 0.01),
sd_claim = 0.5,
sd_recovery = 0.1,
seed = NULL,
paid_non_negative = FALSE,
validation_type = "random"){
# set up the simulation
charm <- simulation_machine(
num_claims, # Parameter for the expected total number of claims in the simulation output
lob_distribution, # there are 4 lines of business, so the proportions must sum to 1
inflation, # inflation per year for each lob
sd_claim, # how volatile are claim amounts?
sd_recovery # how volatile are recovery payments?
)
# simulate the data and store it in a variable
# setting a seed is optional but ensures the same output for a given seed
records <- as.data.table(conjure(charm, seed = seed))
#convert some fields to factors for convenience later
records$lob <- as.factor(records$lob)
records$cc <- as.factor(records$cc)
records$injured_part <- as.factor(records$injured_part)
# aggregate by AY and dev year
# sum paid transactions by acc and dev year
paid_triangle_data <- records[,.(paid = sum(paid_loss)), by = c("accident_year","development_year")]
paid_triangle_data[, ':='(accident_year_factor = as.factor(accident_year), development_year_factor = as.factor(development_year))]
paid_triangle_data[, train_ind := (accident_year + development_year <= 2005)]
if (validation_type == "random") {
paid_triangle_data$fold <- "train"
validation_rows <- sample(which(paid_triangle_data$train_ind), 23)
paid_triangle_data[validation_rows]$fold <- "validation"
} else{
paid_triangle_data[train_ind == TRUE, fold := ifelse(accident_year + development_year > 2003, "validation", "train")]
}
paid_triangle_data[train_ind == FALSE, fold := "test"]
if (paid_non_negative == TRUE) {
paid_triangle_data[paid < 0, paid := 0]
}
list(
records = records,
paid_triangle_data = paid_triangle_data
)
}