-
Notifications
You must be signed in to change notification settings - Fork 0
/
ERGM.txt
58 lines (40 loc) · 1.37 KB
/
ERGM.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
install.packages("statnet") # Network hypotheses/models
install.packages("ergm") # ERG models (in Statnet)
install.packages("Rglpk") # Needed for model estimation
#Import matrix
data <- read.csv("~/Desktop/Sunbelt_June/Sunbelt_Ville_June/adjacency_matrix.csv", header=F, as.is = F)
# ================ ~~ Directed network ================
help('ergm-terms')
library(statnet)
#Create two Statnet network objects
#---------Convert into matrix---------#
data_stat <- as.matrix(data)
#---------Create Statnet network object---------#
#network object
data_net <- network(data_stat, directed = TRUE, matrix.type = "adjacency",
loops=F, multiple=F)
data_net
#---------Exponential random graph model---------#
#install.packages("ergm")
library(ergm)
help('ergm-terms')
#1
lap_model <- ergm(data_net ~ edges)
summary(lap_model)
#2
lap_model <- ergm(data_net ~ edges + mutual)
summary(lap_model)
#1-5
lap_model <- ergm(data_net ~ edges #connections
+ mutual #reciprocity
+ gwesp(0.2, fixed=T) #Transitive closure
+ edgecov(doc_net) #H4: Doc sharing tie
+ nodeicov("expertise") #H5: Incoming links
+ nodeocov("expertise") #H6: Outgoing links
)
summary(lap_model)
#---------Goodness of Fit---------#
#Calculate gof and plot
gof_1 <- gof(lap_model)
gof_1
plot(gof_1)