-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrender.py
647 lines (562 loc) · 26.5 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
from utils import io_util, rend_util
from models.frameworks import get_model
from utils.checkpoints import sorted_ckpts
from utils.print_fn import log
import os
import math
import imageio
import functools
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
from scipy.interpolate import interp1d
from scipy.spatial.transform import Slerp
from scipy.spatial.transform import Rotation as R
def normalize(vec, axis=-1):
return vec / (np.linalg.norm(vec, axis=axis, keepdims=True) + 1e-9)
def view_matrix(
forward: np.ndarray,
up: np.ndarray,
cam_location: np.ndarray):
rot_z = normalize(forward)
rot_x = normalize(np.cross(up, rot_z))
rot_y = normalize(np.cross(rot_z, rot_x))
mat = np.stack((rot_x, rot_y, rot_z, cam_location), axis=-1)
hom_vec = np.array([[0., 0., 0., 1.]])
if len(mat.shape) > 2:
hom_vec = np.tile(hom_vec, [mat.shape[0], 1, 1])
mat = np.concatenate((mat, hom_vec), axis=-2)
return mat
def poses_avg(poses):
# center = poses[:, :3, 3].mean(0)
# forward = poses[:, :3, 2].sum(0)
# up = poses[:, :3, 1].sum(0)
# c2w = view_matrix(forward, up, center)
#######FOR GIRL########
center = poses[0, :3, 3]
forward = poses[0, :3, 2]
up = poses[0, :3, 1]
c2w = view_matrix(forward, up, center)
return c2w
def look_at(
cam_location: np.ndarray,
point: np.ndarray,
up=np.array([0., -1., 0.]) # openCV convention
# up=np.array([0., 1., 0.]) # openGL convention
):
# Cam points in positive z direction
forward = normalize(point - cam_location) # openCV convention
# forward = normalize(cam_location - point) # openGL convention
return view_matrix(forward, up, cam_location)
def c2w_track_spiral(c2w, up_vec, rads, focus: float, zrate: float, rots: int, N: int, zdelta: float = 0.):
# TODO: support zdelta
"""generate camera to world matrices of spiral track, looking at the same point [0,0,focus]
Args:
c2w ([4,4] or [3,4]): camera to world matrix (of the spiral center, with average rotation and average translation)
up_vec ([3,]): vector pointing up
rads ([3,]): radius of x,y,z direction, of the spiral track
# zdelta ([float]): total delta z that is allowed to change
focus (float): a focus value (to be looked at) (in camera coordinates)
zrate ([float]): a factor multiplied to z's angle
rots ([int]): number of rounds to rotate
N ([int]): number of total views
"""
c2w_tracks = []
rads = np.array(list(rads) + [1.])
# focus_in_cam = np.array([0, 0, -focus, 1.]) # openGL convention
focus_in_cam = np.array([0, 0, focus, 1.]) # openCV convention
focus_in_world = np.dot(c2w[:3, :4], focus_in_cam)
rots = 1
for theta in np.linspace(0., 2. * np.pi * rots, N+1)[:-1]:
cam_location = np.dot(
c2w[:3, :4],
# np.array([np.cos(theta), -np.sin(theta), -np.sin(theta*zrate), 1.]) * rads # openGL convention
np.array([np.cos(theta), np.sin(theta), np.sin(
theta*zrate), 1.]) * rads # openCV convention
)
center = c2w[:3, 3].reshape(3)
print("center", center)
rad = args.rot_rad
for theta in np.linspace(0, 2 * np.pi, N+1)[:-1]:
cam_location = np.zeros(3)
x = center[0] + rad*np.cos(theta)
y = center[1] + rad*np.sin(theta)
z = center[2]
cam_location[0] = x
cam_location[1] = y
cam_location[2] = z
c2w_i = look_at(cam_location, focus_in_world, up=up_vec)
c2w_tracks.append(c2w_i)
return c2w_tracks
def smoothed_motion_interpolation(full_range, num_samples, uniform_proportion=1/3.):
half_acc_proportion = (1-uniform_proportion) / 2.
num_uniform_acc = max(math.ceil(num_samples*half_acc_proportion), 2)
num_uniform = max(math.ceil(num_samples*uniform_proportion), 2)
num_samples = num_uniform_acc * 2 + num_uniform
seg_velocity = np.arange(num_uniform_acc)
seg_angle = np.cumsum(seg_velocity)
# NOTE: full angle = 2*k*x_max + k*v_max*num_uniform
ratio = full_range / (2.0*seg_angle.max()+seg_velocity.max()*num_uniform)
# uniform acceleration sequence
seg_acc = seg_angle * ratio
acc_angle = seg_acc.max()
# uniform sequence
seg_uniform = np.linspace(
acc_angle, full_range-acc_angle, num_uniform+2)[1:-1]
# full sequence
all_samples = np.concatenate(
[seg_acc, seg_uniform, full_range-np.flip(seg_acc)])
return all_samples
def visualize_cam_on_circle(intr, extrs, up_vec, c0):
import matplotlib
import matplotlib.pyplot as plt
from tools.vis_camera import draw_camera
cam_width = 0.2/2 # Width/2 of the displayed camera.
cam_height = 0.1/2 # Height/2 of the displayed camera.
scale_focal = 2000 # Value to scale the focal length.
fig = plt.figure()
ax = fig.gca(projection='3d')
# ax.set_aspect("equal")
ax.set_aspect("auto")
matplotlib.rcParams.update({'font.size': 22})
# ----------- draw cameras
min_values, max_values = draw_camera(
ax, intr, cam_width, cam_height, scale_focal, extrs, True)
radius = np.linalg.norm(c0)
# ----------- draw small circle
angles = np.linspace(0, np.pi * 2., 180)
rots = R.from_rotvec(angles[:, None] * up_vec[None, :])
# [180, 3]
pts = rots.apply(c0)
# [x, z, -y]
ax.plot(pts[:, 0], pts[:, 2], -pts[:, 1], color='black')
# ----------- draw sphere
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = radius * np.outer(np.cos(u), np.sin(v))
y = radius * np.outer(np.sin(u), np.sin(v))
z = radius * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x, y, z, rstride=4, cstride=4,
color='grey', linewidth=0, alpha=0.1)
# ----------- draw axis
axis = np.array(
[[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])
X, Y, Z, U, V, W = zip(*axis)
ax.quiver(X[0], Z[0], -Y[0], U[0], W[0], -V[0], color='red')
ax.quiver(X[1], Z[1], -Y[1], U[1], W[1], -V[1], color='green')
ax.quiver(X[2], Z[2], -Y[2], U[2], W[2], -V[2], color='blue')
ax.set_xlabel('x')
ax.set_ylabel('z')
ax.set_zlabel('-y')
plt.show()
def visualize_cam_spherical_spiral(intr, extrs, up_vec, c0, focus_center, n_rots, up_angle):
import matplotlib
import matplotlib.pyplot as plt
from tools.vis_camera import draw_camera
cam_width = 0.2/2 # Width/2 of the displayed camera.
cam_height = 0.1/2 # Height/2 of the displayed camera.
scale_focal = 2000 # Value to scale the focal length.
fig = plt.figure()
ax = fig.gca(projection='3d')
# ax.set_aspect("equal")
ax.set_aspect("auto")
matplotlib.rcParams.update({'font.size': 22})
# ----------- draw cameras
min_values, max_values = draw_camera(
ax, intr, cam_width, cam_height, scale_focal, extrs, True)
radius = np.linalg.norm(c0)
# ----------- draw small circle
# key rotations of a spherical spiral path
num_pts = int(n_rots * 180.)
sphere_thetas = np.linspace(0, np.pi * 2. * n_rots, num_pts)
sphere_phis = np.linspace(0, up_angle, num_pts)
# first rotate about up vec
rots_theta = R.from_rotvec(sphere_thetas[:, None] * up_vec[None, :])
pts = rots_theta.apply(c0)
# then rotate about horizontal vec
horizontal_vec = normalize(
np.cross(pts-focus_center[None, :], up_vec[None, :], axis=-1))
rots_phi = R.from_rotvec(sphere_phis[:, None] * horizontal_vec)
pts = rots_phi.apply(pts)
# [x, z, -y]
ax.plot(pts[:, 0], pts[:, 2], -pts[:, 1], color='black')
# ----------- draw sphere
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = radius * np.outer(np.cos(u), np.sin(v))
y = radius * np.outer(np.sin(u), np.sin(v))
z = radius * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x, y, z, rstride=4, cstride=4,
color='grey', linewidth=0, alpha=0.1)
# ----------- draw axis
axis = np.array(
[[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])
X, Y, Z, U, V, W = zip(*axis)
ax.quiver(X[0], Z[0], -Y[0], U[0], W[0], -V[0], color='red')
ax.quiver(X[1], Z[1], -Y[1], U[1], W[1], -V[1], color='green')
ax.quiver(X[2], Z[2], -Y[2], U[2], W[2], -V[2], color='blue')
ax.set_xlabel('x')
ax.set_ylabel('z')
ax.set_zlabel('-y')
plt.show()
def main_function(args):
do_render_mesh = args.render_mesh is not None
if do_render_mesh:
import open3d as o3d
io_util.cond_mkdir('./out')
assert 1 < args.rot_percentile <= 100
model, trainer, render_kwargs_train, render_kwargs_test, render_fn = get_model(args, [
480, 270])
if args.load_pt is None:
# automatically load 'final_xxx.pt' or 'latest.pt'
ckpt_file = sorted_ckpts(os.path.join(
args.training.exp_dir, 'ckpts'))[-1]
else:
ckpt_file = args.load_pt
log.info("=> Use ckpt:" + str(ckpt_file))
state_dict = torch.load(ckpt_file, map_location=args.device)
model.load_state_dict(state_dict['model'])
model.to(args.device)
if args.use_surface_render:
assert args.use_surface_render == 'sphere_tracing' or args.use_surface_render == 'root_finding'
from models.ray_casting import surface_render
render_fn = functools.partial(
surface_render, model=model, ray_casting_algo=args.use_surface_render)
if args.alter_radiance is not None:
state_dict = torch.load(args.alter_radiance, map_location=args.device)
radiance_state_dict = {}
for k, v in state_dict['model'].items():
if 'radiance_net' in k:
newk = k.replace('radiance_net.', '')
radiance_state_dict[newk] = v
model.radiance_net.load_state_dict(radiance_state_dict)
from dataio import get_data
dataset = get_data(args, downscale=args.downscale)
(_, model_input, ground_truth) = dataset[0]
intrinsics = model_input["intrinsics"].cuda()
H, W = (dataset.H, dataset.W)
# NOTE: fx, fy should be scalec with the same ratio. Different ratio will cause the picture itself be stretched.
# fx=intrinsics[0,0] fy=intrinsics[1,1]
# cy=intrinsics[1,2] for H's scal cx=intrinsics[0,2] for W's scale
if args.H is not None:
intrinsics[1, 2] *= (args.H/dataset.H)
H = args.H
if args.H_scale is not None:
H = int(dataset.H * args.H_scale)
intrinsics[1, 2] *= (H/dataset.H)
if args.W is not None:
intrinsics[0, 2] *= (args.W/dataset.W)
W = args.W
if args.W_scale is not None:
W = int(dataset.W * args.W_scale)
intrinsics[0, 2] *= (W/dataset.W)
log.info("=> Rendering resolution @ [{} x {}]".format(H, W))
c2ws = torch.stack(dataset.c2w_all, dim=0).data.cpu().numpy()
# -----------------
# Spiral path
# original nerf-like spiral path
# -----------------
# if args.camera_path == 'spiral':
# c2w_center = poses_avg(c2ws)
# up = c2ws[:, :3, 1].sum(0)
# #For fangzhou, use 85 for larger rad
# rads = np.percentile(np.abs(c2ws[:, :3, 3]), 85, 0)
# focus_distance = np.mean(np.linalg.norm(c2ws[:, :3, 3], axis=-1))
# render_c2ws = c2w_track_spiral(c2w_center, up, rads, focus_distance*0.8, zrate=0.0, rots=1, N=args.num_views)
##########FOR GIRL########
if args.camera_path == 'spiral':
c2w_center = poses_avg(c2ws)
up = c2ws[:, :3, 1].sum(0)
rads = np.percentile(np.abs(c2ws[:, :3, 3]), args.rot_percentile, 0)
focus_distance = np.mean(np.linalg.norm(c2ws[:, :3, 3], axis=-1))
render_c2ws = c2w_track_spiral(
c2w_center, up, rads, focus_distance*0.8, zrate=0.0, rots=1, N=args.num_views)
# -----------------
# https://en.wikipedia.org/wiki/Spiral#Spherical_spirals
# assume three input views are on a small circle, then generate a spherical spiral path based on the small circle
# -----------------
# elif args.camera_path == 'spherical_spiral':
# up_angle = np.pi / 3.
# n_rots = 2.2
# view_ids = args.camera_inds.split(',')
# assert len(
# view_ids) == 3, 'please select three views on a small circle, in CCW order (from above)'
# view_ids = [int(v) for v in view_ids]
# centers = c2ws[view_ids, :3, 3]
# centers_norm = np.linalg.norm(centers, axis=-1)
# radius = np.max(centers_norm)
# centers = centers * radius / centers_norm
# vec0 = centers[1] - centers[0]
# vec1 = centers[2] - centers[0]
# # the axis vertical to the small circle's area
# up_vec = normalize(np.cross(vec0, vec1))
# # key rotations of a spherical spiral path
# sphere_thetas = np.linspace(0, np.pi * 2. * n_rots, args.num_views)
# sphere_phis = np.linspace(0, up_angle, args.num_views)
# if True:
# # use the origin as the focus center
# focus_center = np.zeros([3])
# else:
# # use the center of the small circle as the focus center
# focus_center = np.dot(up_vec, centers[0]) * up_vec
# # first rotate about up vec
# rots_theta = R.from_rotvec(sphere_thetas[:, None] * up_vec[None, :])
# render_centers = rots_theta.apply(centers[0])
# # then rotate about horizontal vec
# horizontal_vec = normalize(
# np.cross(render_centers-focus_center[None, :], up_vec[None, :], axis=-1))
# rots_phi = R.from_rotvec(sphere_phis[:, None] * horizontal_vec)
# render_centers = rots_phi.apply(render_centers)
# render_c2ws = look_at(
# render_centers, focus_center[None, :], up=-up_vec)
# if args.debug:
# # plot camera path
# intr = intrinsics.data.cpu().numpy()
# extrs = np.linalg.inv(render_c2ws)
# visualize_cam_spherical_spiral(
# intr, extrs, up_vec, centers[0], focus_center, n_rots, up_angle)
# ------------------
# Small Circle Path:
# assume three input views are on a small circle, then interpolate along this small circle
# ------------------
# elif args.camera_path == 'small_circle':
# view_ids = args.camera_inds.split(',')
# assert len(
# view_ids) == 3, 'please select three views on a small circle, int CCW order (from above)'
# view_ids = [int(v) for v in view_ids]
# centers = c2ws[view_ids, :3, 3]
# centers_norm = np.linalg.norm(centers, axis=-1)
# radius = np.max(centers_norm)
# centers = centers * radius / centers_norm
# vec0 = centers[1] - centers[0]
# vec1 = centers[2] - centers[0]
# # the axis vertical to the small circle
# up_vec = normalize(np.cross(vec0, vec1))
# # length of the chord between c0 and c2
# len_chord = np.linalg.norm(vec1, axis=-1)
# # angle of the smaller arc between c0 and c1
# full_angle = np.arcsin(len_chord/2/radius) * 2.
# all_angles = smoothed_motion_interpolation(full_angle, args.num_views)
# rots = R.from_rotvec(all_angles[:, None] * up_vec[None, :])
# centers = rots.apply(centers[0])
# # get c2w matrices
# render_c2ws = look_at(centers, np.zeros_like(centers), up=-up_vec)
# if args.debug:
# # plot camera path
# intr = intrinsics.data.cpu().numpy()
# extrs = np.linalg.inv(render_c2ws)
# visualize_cam_on_circle(intr, extrs, up_vec, centers[0])
# -----------------
# Interpolate path
# directly interpolate among all input views
# -----------------
# elif args.camera_path == 'interpolation':
# # c2ws = c2ws[:25] # NOTE: [:20] fox taxi dataset
# key_rots = R.from_matrix(c2ws[:, :3, :3])
# key_times = list(range(len(key_rots)))
# slerp = Slerp(key_times, key_rots)
# interp = interp1d(key_times, c2ws[:, :3, 3], axis=0)
# render_c2ws = []
# for i in range(args.num_views):
# time = float(i) / args.num_views * (len(c2ws) - 1)
# cam_location = interp(time)
# cam_rot = slerp(time).as_matrix()
# c2w = np.eye(4)
# c2w[:3, :3] = cam_rot
# c2w[:3, 3] = cam_location
# render_c2ws.append(c2w)
# render_c2ws = np.stack(render_c2ws, axis=0)
# ------------------
# Great Circle Path:
# assume two input views are on a great circle, then interpolate along this great circle
# ------------------
# elif args.camera_path == 'great_circle':
# # to interpolate along a great circle that pass through the c2w center of view0 and view1
# view01 = args.camera_inds.split(',')
# assert len(
# view01) == 2, 'please select two views on a great circle, in CCW order (from above)'
# view0, view1 = [int(s) for s in view01]
# c0 = c2ws[view0, :3, 3]
# c0_norm = np.linalg.norm(c0)
# c1 = c2ws[view1, :3, 3]
# c1_norm = np.linalg.norm(c1)
# # the radius of the great circle
# # radius = (c0_norm+c1_norm)/2.
# radius = max(c0_norm, c1_norm)
# # re-normalize the c2w centers to be on the exact same great circle
# c0 = c0 * radius / c0_norm
# c1 = c1 * radius / c1_norm
# # the axis vertical to the great circle
# up_vec = normalize(np.cross(c0, c1))
# # length of the chord between c0 and c1
# len_chord = np.linalg.norm(c0-c1, axis=-1)
# # angle of the smaller arc between c0 and c1
# full_angle = np.arcsin(len_chord/2/radius) * 2.
# all_angles = smoothed_motion_interpolation(full_angle, args.num_views)
# # get camera centers
# rots = R.from_rotvec(all_angles[:, None] * up_vec[None, :])
# centers = rots.apply(c0)
# # get c2w matrices
# render_c2ws = look_at(centers, np.zeros_like(centers), up=-up_vec)
# if args.debug:
# # plot camera path
# intr = intrinsics.data.cpu().numpy()
# extrs = np.linalg.inv(render_c2ws)
# visualize_cam_on_circle(intr, extrs, up_vec, centers[0])
else:
raise RuntimeError(
"Please choose render type between [spiral, interpolation, small_circle, great_circle, spherical_spiral]")
log.info("=> Camera path: {}".format(args.camera_path))
rgb_imgs = []
depth_imgs = []
normal_imgs = []
# save mesh render images
mesh_imgs = []
render_kwargs_test['rayschunk'] = args.rayschunk
if do_render_mesh:
log.info("=> Load mesh: {}".format(args.render_mesh))
geometry = o3d.io.read_triangle_mesh(args.render_mesh)
geometry.compute_vertex_normals()
vis = o3d.visualization.Visualizer()
vis.create_window(width=W, height=H, visible=args.debug)
ctrl = vis.get_view_control()
vis.add_geometry(geometry)
# opt = vis.get_render_option()
# opt.mesh_show_back_face = True
cam = ctrl.convert_to_pinhole_camera_parameters()
intr = intrinsics.data.cpu().numpy()
# cam.intrinsic.set_intrinsics(W, H, intr[0,0], intr[1,1], intr[0,2], intr[1,2])
cam.intrinsic.set_intrinsics(
W, H, intr[0, 0], intr[1, 1], W/2-0.5, H/2-0.5)
ctrl.convert_from_pinhole_camera_parameters(cam)
def integerify(img):
return (img*255.).astype(np.uint8)
rgb_i = 0
try:
os.mkdir(os.path.join("out", args.exp_name))
except:
pass
try:
os.mkdir(os.path.join("out", args.exp_name, "rgb"))
except:
pass
for c2w in tqdm(render_c2ws, desc='rendering...'):
rgb_i += 1
if not args.debug and not args.disable_rgb:
rays_o, rays_d, select_inds = rend_util.get_rays(torch.from_numpy(
c2w).float().cuda()[None, ...], intrinsics[None, ...], H, W, N_rays=-1)
with torch.no_grad():
# NOTE: detailed_output set to False to save a lot of GPU memory.
rgb, depth, extras = render_fn(
rays_o, rays_d, show_progress=True,
require_nablas=True, calc_normal=True, detailed_output=False, **render_kwargs_test)
depth = depth.data.cpu().reshape(H, W, 1).numpy()
depth = depth/depth.max()
rgb_img = integerify(rgb.data.cpu().reshape(H, W, 3).numpy())
if args.save_images:
imageio.imsave(os.path.join(
f"out/{args.exp_name}/rgb", '{:05d}.png'.format(rgb_i)), rgb_img)
rgb_imgs.append(rgb_img)
depth_imgs.append(depth)
if args.use_surface_render:
normals = extras['normals_surface']
else:
normals = extras['normals_volume']
normals = normals.data.cpu().reshape(H, W, 3).numpy()
# if True:
# # (c2w^(-1) @ n)^T = n^T @ c2w^(-1)^T = n^T @ c2w
# normals = normals @ c2w[:3, :3]
normal_imgs.append(normals/2.+0.5)
if do_render_mesh:
extr = np.linalg.inv(c2w)
cam.extrinsic = extr
ctrl.convert_from_pinhole_camera_parameters(cam)
vis.poll_events()
vis.update_renderer()
if not args.debug:
rgb_mesh = vis.capture_screen_float_buffer(do_render=True)
mesh_imgs.append(np.asarray(rgb_mesh))
rgb_imgs = [img for img in rgb_imgs]
depth_imgs = [integerify(img) for img in depth_imgs]
normal_imgs = [integerify(img) for img in normal_imgs]
mesh_imgs = [integerify(img) for img in mesh_imgs]
if not args.debug:
if args.outbase is None:
outbase = args.expname
else:
outbase = args.outbase
post_fix = '{}x{}_{}_{}'.format(H, W, args.num_views, args.camera_path)
if args.use_surface_render:
post_fix = post_fix + '_{}'.format(args.use_surface_render)
if not args.disable_rgb:
imageio.mimwrite(os.path.join('out', '{}_rgb.mp4'.format(
args.exp_name)), rgb_imgs, fps=args.fps, quality=10)
imageio.mimwrite(os.path.join('out', '{}_rgb.gif'.format(
args.exp_name)), rgb_imgs, fps=args.fps)
if args.save_depth:
imageio.mimwrite(os.path.join('out', '{}_depth.mp4'.format(
args.exp_name)), depth_imgs, fps=args.fps, quality=10)
if args.save_normal:
imageio.mimwrite(os.path.join('out', '{}_normal.mp4'.format(
args.exp_name)), normal_imgs, fps=args.fps, quality=10)
rgb_and_normal_imgs = [np.concatenate(
[rgb, normal], axis=0) for rgb, normal in zip(rgb_imgs, normal_imgs)]
imageio.mimwrite(os.path.join('out', '{}_rgb&normal.mp4'.format(
args.exp_name)), rgb_and_normal_imgs, fps=args.fps, quality=10)
if do_render_mesh:
vis.destroy_window()
imageio.mimwrite(os.path.join('out', '{}_mesh_{}.mp4'.format(
outbase, post_fix)), mesh_imgs, fps=args.fps, quality=10)
if not args.disable_rgb:
rgb_and_mesh_imgs = [np.concatenate(
[rgb, mesh], axis=0) for rgb, mesh in zip(rgb_imgs, mesh_imgs)]
imageio.mimwrite(os.path.join('out', '{}_rgb&mesh_{}.mp4'.format(
outbase, post_fix)), rgb_and_mesh_imgs, fps=args.fps, quality=10)
if args.save_normal:
rgb_and_normal_and_mesh_imgs = [np.concatenate(
[rgb, normal, mesh], axis=0) for rgb, normal, mesh in zip(rgb_imgs, normal_imgs, mesh_imgs)]
imageio.mimwrite(os.path.join('out', '{}_rgb&normal&mesh_{}.mp4'.format(
outbase, post_fix)), rgb_and_normal_and_mesh_imgs, fps=args.fps, quality=10)
if __name__ == "__main__":
# Arguments
# "./configs/neus.yaml"
parser = io_util.create_args_parser()
parser.add_argument("--num_views", type=int, default=200)
parser.add_argument("--render_mesh", type=str, default=None,
help='the mesh ply file to be rendered')
parser.add_argument("--device", type=str,
default='cuda', help='render device')
parser.add_argument("--downscale", type=float, default=1)
parser.add_argument("--rayschunk", type=int, default=2048)
parser.add_argument("--save_images", action="store_true",
help='whether to save intermediate images, if not, only mp4 and gif will be saved')
parser.add_argument("--camera_path", type=str, default="spiral",
help="choose between [spiral, interpolation, small_circle, great_circle, spherical_spiral]")
parser.add_argument("--camera_inds", type=str,
help="params for generating camera paths", default='11,15')
parser.add_argument("--load_pt", type=str, default=None)
parser.add_argument("--H", type=int, default=None)
parser.add_argument("--H_scale", type=float, default=None)
parser.add_argument("--W", type=int, default=None)
parser.add_argument("--W_scale", type=float, default=None)
parser.add_argument("--debug", action='store_true')
parser.add_argument("--disable_rgb", action='store_true')
parser.add_argument("--fps", type=int, default=30)
parser.add_argument("--alter_radiance", type=str, default=None,
help='alter the radiance net with another trained ckpt.')
parser.add_argument("--outbase", type=str, default=None,
help='base of output filename')
parser.add_argument("--use_surface_render", type=str, default=None,
help='choose between [sphere_tracing, root_finding]. \n\t Use surface rendering instead of volume rendering \n\t NOTE: way faster, but might not be the original model behavior')
parser.add_argument("--exp_name", type=str)
parser.add_argument("--rot_rad", type=float, default=0.3,
help="rotation radius for spiral camera path")
# we use 25 for girl, 85 for our fangzhou
parser.add_argument("--rot_percentile", type=int, default=85,
help="in [1, 100], larger value means larger angle")
parser.add_argument("--save_depth", type=bool, default=True)
parser.add_argument("--save_normal", type=bool, default=True)
args, unknown = parser.parse_known_args()
config = io_util.load_config(args, unknown)
main_function(config)