该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight image Classification)快速构建轻量级、高精度、可落地的“是否佩戴安全帽”的二分类模型。该模型可以广泛应用于如建筑施工场景、工厂车间场景、交通场景等。
下表列出了判断图片中是否佩戴安全帽的二分类模型的相关指标,前三行展现了使用 Res2Net200_vd_26w_4s,SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第四行至第七行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + UDML 知识蒸馏策略训练得到的模型的相关指标。
模型 | Tpr(%) | 延时(ms) | 存储(M) | 策略 |
---|---|---|---|---|
SwinTranformer_tiny | 93.57 | 91.32 | 111 | 使用ImageNet预训练模型 |
Res2Net200_vd_26w_4s | 98.92 | 80.99 | 284 | 使用ImageNet预训练模型 |
MobileNetV3_small_x0_35 | 84.83 | 2.85 | 2.6 | 使用ImageNet预训练模型 |
PPLCNet_x1_0 | 93.27 | 2.03 | 7.1 | 使用ImageNet预训练模型 |
PPLCNet_x1_0 | 98.16 | 2.03 | 7.1 | 使用SSLD预训练模型 |
PPLCNet_x1_0 | 99.30 | 2.03 | 7.1 | 使用SSLD预训练模型+EDA策略 |
PPLCNet_x1_0 | 99.38 | 2.03 | 7.1 | 使用SSLD预训练模型+EDA策略+UDML知识蒸馏策略 |
从表中可以看出,在使用服务器端大模型作为 backbone 时,SwinTranformer_tiny 精度较低,Res2Net200_vd_26w_4s 精度较高,但服务器端大模型推理速度普遍较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度显著降低。在将 backbone 替换为 PPLCNet_x1_0 后,精度较 MobileNetV3_small_x0_35 提高约 8.5 个百分点,与此同时速度快 20% 以上。在此基础上,将 PPLCNet_x1_0 的预训练模型替换为 SSLD 预训练模型后,在对推理速度无影响的前提下,精度提升约 4.9 个百分点,进一步地使用 EDA 策略后,精度可以再提升 1.1 个百分点。此时,PPLCNet_x1_0 已经超过 Res2Net200_vd_26w_4s 模型的精度,但是速度快 70+ 倍。最后,在使用 UDML 知识蒸馏后,精度可以再提升 0.08 个百分点。下面详细介绍关于 PULC 安全帽模型的训练方法和推理部署方法。
备注:
-
Tpr
指标的介绍可以参考 3.3小节的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启MKLDNN加速策略,线程数为10。 -
关于PP-LCNet的介绍可以参考PP-LCNet介绍,相关论文可以查阅PP-LCNet paper。
- 您的机器安装的是 CUDA9 或 CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
- 您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
更多的版本需求,请参照飞桨官网安装文档中的说明进行操作。
使用如下命令快速安装 paddleclas
pip3 install paddleclas
点击这里下载 demo 数据并解压,然后在终端中切换到相应目录。
- 使用命令行快速预测
paddleclas --model_name=safety_helmet --infer_imgs=pulc_demo_imgs/safety_helmet/safety_helmet_test_1.png
结果如下:
>>> result
class_ids: [1], scores: [0.9986255], label_names: ['unwearing_helmet'], filename: pulc_demo_imgs/safety_helmet/safety_helmet_test_1.png
Predict complete!
备注: 更换其他预测的数据时,只需要改变 --infer_imgs=xx
中的字段即可,支持传入整个文件夹。
- 在 Python 代码中预测
import paddleclas
model = paddleclas.PaddleClas(model_name="safety_helmet")
result = model.predict(input_data="pulc_demo_imgs/safety_helmet/safety_helmet_test_1.png")
print(next(result))
备注:model.predict()
为可迭代对象(generator
),因此需要使用 next()
函数或 for
循环对其迭代调用。每次调用将以 batch_size
为单位进行一次预测,并返回预测结果, 默认 batch_size
为 1,如果需要更改 batch_size
,实例化模型时,需要指定 batch_size
,如 model = paddleclas.PaddleClas(model_name="safety_helmet", batch_size=2)
, 使用默认的代码返回结果示例如下:
>>> result
[{'class_ids': [1], 'scores': [0.9986255], 'label_names': ['unwearing_helmet'], 'filename': 'pulc_demo_imgs/safety_helmet/safety_helmet_test_1.png'}]
- 安装:请先参考文档 环境准备 配置 PaddleClas 运行环境。
本案例中所使用的所有数据集均为开源数据,数据集基于Safety-Helmet-Wearing-Dataset、hard-hat-detection与Large-scale CelebFaces Attributes (CelebA) Dataset处理整合而来。
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
- 对于 Safety-Helmet-Wearing-Dataset 数据集:根据 bbox 标签数据,对其宽、高放大 3 倍作为 bbox 对图像进行裁剪,其中带有安全帽的图像类别为0,不戴安全帽的图像类别为1;
- 对于 hard-hat-detection 数据集:仅使用其中类别标签为 “hat” 的图像,并使用 bbox 标签进行裁剪,图像类别为0;
- 对于 CelebA 数据集:仅使用其中类别标签为 “Wearing_Hat” 的图像,并使用 bbox 标签进行裁剪,图像类别为0。
在整合上述数据后,可得到共约 15 万数据,其中戴安全帽与不戴安全帽的图像数量分别约为 2.8 万与 12.1 万,然后在两个类别上分别随机选取 0.56 万张图像作为测试集,共约 1.12 万张图像,其他约 13.8 万张图像作为训练集。
处理后的数据集部分数据可视化如下:
此处提供了经过上述方法处理好的数据,可以直接下载得到。
进入 PaddleClas 目录。
cd path_to_PaddleClas
进入 dataset/
目录,下载并解压安全帽场景的数据。
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/safety_helmet.tar
tar -xf safety_helmet.tar
cd ../
执行上述命令后,dataset/
下存在 safety_helmet
目录,该目录中具有以下数据:
├── images
│ ├── VOC2028_part2_001209_1.jpg
│ ├── HHD_hard_hat_workers23_1.jpg
│ ├── CelebA_077809.jpg
│ ├── ...
│ └── ...
├── train_list.txt
└── val_list.txt
其中,train_list.txt
和 val_list.txt
分别为训练集和验证集的标签文件,所有的图像数据在 images/
目录下。
备注:
- 关于
train_list.txt
、val_list.txt
的格式说明,可以参考PaddleClas分类数据集格式说明 。
在 ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml
中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml
验证集的最佳指标在 0.985-0.993
之间(数据集较小,容易造成波动)。
备注:
-
此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为万分之一。关于 Fpr 和 Tpr 的更多介绍,可以参考这里。
-
在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的
Fpr
、Tpr
值,以及当前的threshold
值,Tpr
值反映了在当前Fpr
值下的召回率,该值越高,代表模型越好。threshold
表示当前最佳Fpr
所对应的分类阈值,可用于后续模型部署落地等。
训练好模型之后,可以通过以下命令实现对模型指标的评估。
python3 tools/eval.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
其中 -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
指定了训练过程中的最佳参数权重文件所在的路径,如需指定其他权重文件,只需替换对应的路径即可。
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 tools/infer.py
中提供了完整的示例,只需执行下述命令即可完成模型预测:
python3 tools/infer.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
输出结果如下:
[{'class_ids': [1], 'scores': [0.9524797], 'label_names': ['unwearing_helmet'], 'file_name': 'deploy/images/PULC/safety_helmet/safety_helmet_test_1.png'}]
备注:
-
这里
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 -
默认是对
deploy/images/PULC/safety_helmet/safety_helmet_test_1.png
进行预测,此处也可以通过增加字段-o Infer.infer_imgs=xxx
对其他图片预测。 -
二分类默认的阈值为0.5, 如果需要指定阈值,可以重写
Infer.PostProcess.threshold
,如-o Infer.PostProcess.threshold=0.9167
,该值需要根据实际应用场景来确定,在 safety_helmet 数据集的 val 验证集上,在万分之一 Fpr 下得到的最佳 Tpr 时,该值为 0.9167。
UDML 知识蒸馏是一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考UDML 知识蒸馏。
配置文件 ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0_distillation.yaml
提供了 UDML知识蒸馏策略
的配置。训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0_distillation.yaml
验证集的最佳指标为 0.990-0.993
之间,当前模型最好的权重保存在 output/DistillationModel/best_model_student.pdparams
。
在 3.2 节和 4.1 节所使用的超参数是根据 PaddleClas 提供的 超参数搜索策略
搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考超参数搜索策略来获得更好的训练超参数。
备注:此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference 可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考Paddle Inference官网教程。
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择直接下载 inference 模型的方式。
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_safety_helmet_infer
执行完该脚本后会在 deploy/models/
下生成 PPLCNet_x1_0_safety_helmet_infer
目录,该目录下有如下文件结构:
├── PPLCNet_x1_0_safety_helmet_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
备注: 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在 output/PPLCNet_x1_0/best_model.pdparams
中。
6.1.1 小节提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/safety_helmet_infer.tar && tar -xf safety_helmet_infer.tar
解压完毕后,models
文件夹下应有如下文件结构:
├── safety_helmet_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
返回 deploy
目录:
cd ../
运行下面的命令,对图像 ./images/PULC/safety_helmet/safety_helmet_test_1.png
进行是否佩戴安全帽分类。
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/safety_helmet/inference_safety_helmet.yaml
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/safety_helmet/inference_safety_helmet.yaml -o Global.use_gpu=False
输出结果如下。
safety_helmet_test_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['unwearing_helmet']
备注: 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 Infer.PostProcess.threshold
,如 -o Infer.PostProcess.threshold=0.9167
,该值需要根据实际应用场景来确定,在 safety_helmet 数据集的 val 验证集上,在万分之一 Fpr 下得到的最佳 Tpr 时,该值为 0.9167。该阈值的确定方法可以参考3.3节备注部分。
如果希望预测文件夹内的图像,可以直接修改配置文件中的 Global.infer_imgs
字段,也可以通过下面的 -o
参数修改对应的配置。
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/safety_helmet/inference_safety_helmet.yaml -o Global.infer_imgs="./images/PULC/safety_helmet/"
终端中会输出该文件夹内所有图像的分类结果,如下所示。
safety_helmet_test_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['unwearing_helmet']
safety_helmet_test_2.png: class id(s): [0], score(s): [1.00], label_name(s): ['wearing_helmet']
其中,wearing_helmet
表示该图中的人佩戴了安全帽,unwearing_helmet
表示该图中的人未佩戴安全帽。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。