-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathload_region_distance_matrices.R
136 lines (123 loc) · 4.15 KB
/
load_region_distance_matrices.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/R
# ---------------------------------------
# Load the distance matrices from fdist:
# Imputed, Observed, and Mixed
# Additionally, load in annotation
# ---------------------------------------
domain = system("hostname -d", intern=TRUE)
if (domain == 'broadinstitute.org'){
bindir='~/data/EPIMAP_ANALYSIS/bin/'
} else {
bindir='~/EPIMAP_ANALYSIS/bin/'
}
source(paste0(bindir, 'general_EPIMAP_ANALYSIS.R'))
source(paste0(bindir, 'auxiliary_chromImpute_functions.R'))
source(paste0(bindir, 'load_metadata.R'))
library(circlize)
library(ComplexHeatmap)
# Arguments:
args=(commandArgs(TRUE))
if (length(args)==0) {
nregions = 20000
dataset = 'cor'
print(paste0("No arguments supplied. Defaulting to loading nregions = ",
nregions, ' and dataset ', dataset))
} else {
nregions = args[1]
dataset = args[2]
}
# Set the metric printable name:
if (dataset == 'spearman'){
metric = 'Spearman Rho'
} else if (dataset == 'normdist') {
metric = 'Normalized Euclidean Distance'
} else if (dataset == 'jaccard') {
metric = 'Jaccard Distance'
} else if (dataset == 'cor'){
metric = 'Correlation'
} else if (dataset == 'rtd'){
metric = 'Rogers-Tanimoto Distance'
}
# -----------------------
# Load datasets/matrices:
# -----------------------
# Locations/files:
fnames <- list.files(path='ChromImpute/region_distance/',pattern=paste0('all_fixeddist_',nregions,'_*'))
marks <- c(sub('.tsv.gz','',sub(paste0('all_fixeddist_',nregions,'_'),'',fnames)),'Full')
NMARKS <- length(marks) - 1
# For getting names from file prefix
rownames(tracktab) = tracktab$prefix
# For split obsimp:
splitmat = function(mat, set, mdf){
mat = mat[set, set]
colnames(mat) = mdf[set, 1]
rownames(mat) = mdf[set, 1]
return(mat)
}
# Imputed + observed distance matrices:
# Read in long format:
ll <- list()
obsll <- list()
full.ll <- list()
ct.list <- c()
obsct.list = c()
fullct.list = c()
for (i in 1:NMARKS){
mark <- marks[i]
df <- read.delim(gzfile(paste0('ChromImpute/region_distance/',fnames[i])),sep="\t",header=F)
if(nrow(df) > 1){
print(paste0('Evaluating ',mark))
names(df) = c('prefix','against','nregions','fixed','cor','normdist', 'spearman','jaccard','rtd')
cwide = spread(df[,c('prefix','against',dataset)], against, dataset)
cmat = as.matrix(cwide[,-1])
colnames(cmat) = tracktab[colnames(cmat), "uqsample"]
rownames(cmat) = tracktab[as.character(cwide$prefix), "uqsample"]
rn = unique(sort(rownames(cmat)))
cmat = cmat[rn,rn]
if (dataset %in% c('cor','spearman')){
cmat = 1 - cmat
}
# Split up matrices:
nam = colnames(cmat)
mdf = t(sapply(nam, function(x){strsplit(x, "_")[[1]]}))
iset = which(mdf[,2] == 'imp')
oset = which(mdf[,2] == 'obs')
cimat = splitmat(cmat, iset, mdf)
comat = splitmat(cmat, oset, mdf)
# Add each cell list
ct.list <- sort(unique(c(ct.list, colnames(cimat))))
obsct.list <- sort(unique(c(obsct.list, colnames(comat))))
fullct.list<- sort(unique(c(fullct.list, colnames(cmat))))
# Add matrices - correlation as 1 - cor
ll[[mark]] <- cimat
obsll[[mark]] <- comat
full.ll[[mark]] <- cmat
}
}
# Remove cells with no ATAC-seq imputed (bad imputation):
atacimp = as.character(rownames(ll[['ATAC-seq']]))
ct.list = ct.list[ct.list %in% atacimp]
ct.list = ct.list[ct.list %in% cellorder]
# Fused distance matrix by equal weight of all:
N <- length(ct.list)
full <- matrix(0, nrow=N, ncol=N, dimnames=list(ct.list,ct.list))
idm = full
tmp = full * NA
mainmarks = c('H3K27ac','H3K27me3','H3K36me3','H3K4me1','H3K4me3','H3K9me3')
NMAIN = length(mainmarks)
for (i in 1:NMAIN){
mark <- mainmarks[i]
mat <- ll[[mark]]
if (!is.null(mat)){
rn = as.character(colnames(mat))
rn = rn[rn %in% ct.list]
tmp[rn,rn] = mat[rn,rn]
idm = idm + 1.0 * (!is.na(tmp[ct.list, ct.list]))
# Weighted sum:
# full = full + tmp[ct.list, ct.list] / NMARKS
tmp[is.na(tmp)] = 0
full = full + tmp[ct.list, ct.list]
tmp = tmp * NA
}
}
full = full / idm