forked from rosinality/lvpga-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·176 lines (139 loc) · 5.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import math
import numpy as np
import torch
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms, datasets, utils
from tqdm import tqdm
from model import LVPGA
def log_det_jacobian(model, z, log_sigma_sq, dim_z):
z = z.detach()
batch = z.shape[0]
delta = torch.randn(batch, dim_z, device=z.device) * (
torch.exp(0.5 * log_sigma_sq) + 1e-2
)
eps = delta.norm(dim=1, keepdim=True).detach()
out_z_delta = model(z + delta, mode='dec_enc', grad_enc=False)
out_z = model(z, mode='dec_enc', grad_enc=False)
result = dim_z / 2 * torch.log((((out_z_delta - out_z) / eps) ** 2).sum(1))
return result
def lpvga_loss(model, target, dim_z):
batch = target.shape[0]
out, mu, sigma = model(target, mode='enc_dec')
recon_loss = F.mse_loss(out, target)
z_target = torch.randn(batch, dim_z, device=target.device)
z_recon = model(z_target, mode='dec_enc', detach=True)
z_recon_loss = F.mse_loss(z_recon, z_target)
z_enc_recon = model(mu.detach(), mode='dec_enc', detach=True)
z_enc_recon_loss = F.mse_loss(z_enc_recon, mu.detach())
log_det_loss = log_det_jacobian(model, mu, sigma, dim_z).mean() / dim_z
kl_loss = -(0.5 * (1 + sigma - mu ** 2 - torch.exp(sigma))).mean()
nll = (-math.log(2 * math.pi) / 2 - (mu ** 2) / 2).sum(1)
nll_loss = -nll.mean() / dim_z
return recon_loss, z_recon_loss, z_enc_recon_loss, log_det_loss, kl_loss, nll_loss
def train(epoch, args, loader, model, optimizer, device):
pbar = tqdm(loader)
for i, (img, _) in enumerate(pbar):
model.zero_grad()
img = img.to(device)
recon_loss, z_recon_loss, z_enc_recon_loss, log_det_loss, kl_loss, nll_loss = lpvga_loss(
model, img, args.dim_z
)
if epoch < args.init:
z_recon_weight = 0
z_enc_recon_weight = 0
log_det_weight = 0
kl_weight = 0
nll_weight = 0
else:
z_recon_weight = args.z_rec
z_enc_recon_weight = args.z_enc_rec
log_det_weight = args.log_det
kl_weight = args.kl
nll_weight = args.nll
loss = (
recon_loss
+ z_recon_weight * z_recon_loss
+ z_enc_recon_weight * z_enc_recon_loss
+ log_det_weight * log_det_loss
+ kl_weight * kl_loss
+ nll_weight * nll_loss
)
loss.backward()
optimizer.step()
pbar.set_description(
(
f'epoch: {epoch + 1}; rec: {recon_loss.item():.3f}; z: {z_recon_loss.item():.3f}; '
f'z enc: {z_enc_recon_loss.item():.3f}; log det: {log_det_loss.item():.3f}; '
f'kl: {kl_loss.item():.3f}; nll: {nll_loss.item():.3f}'
)
)
if i % 500 == 0:
model.eval()
with torch.no_grad():
recon, mu, _ = model(img)
sample = model(
torch.randn(args.n_sample, args.dim_z, device=device), mode='dec'
)
interpol_mu = (mu[args.n_sample-1] * torch.from_numpy((np.arange(args.n_sample) / (args.n_sample-1)).reshape(args.n_sample, -1)).float().cuda()) + (mu[0] * torch.from_numpy(((1 - np.arange(args.n_sample) / (args.n_sample-1))).reshape(args.n_sample, -1)).float().cuda())
interpol = model(interpol_mu, mode='dec')
samples = torch.cat(
[img[: args.n_sample], recon[: args.n_sample], interpol[: args.n_sample], sample[: args.n_sample]],
0,
)
utils.save_image(
samples,
f'sample/{str(epoch + 1).zfill(3)}_{str(i).zfill(5)}.png',
nrow=args.n_sample,
normalize=True,
range=(-1, 1),
)
model.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=256)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--size', type=int, default=64)
parser.add_argument('--dim', type=int, default=64)
parser.add_argument('--dim_z', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--init', type=int, default=3)
parser.add_argument('--z_rec', type=float, default=3e-2)
parser.add_argument('--z_enc_rec', type=float, default=1e-2)
parser.add_argument('--log_det', type=float, default=1e-2)
parser.add_argument('--kl', type=float, default=5e-3)
parser.add_argument('--nll', type=float, default=1e-2)
parser.add_argument('--n_sample', type=int, default=20)
parser.add_argument('--ckpt', default='', help="path to checkpoint (to continue training)")
parser.add_argument('path', type=str)
device = 'cuda'
args = parser.parse_args()
print(args)
transform = transforms.Compose(
[
transforms.Resize(args.size),
transforms.CenterCrop(args.size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
dataset = datasets.ImageFolder(args.path, transform=transform)
loader = DataLoader(dataset, batch_size=args.batch, shuffle=True, num_workers=4)
model = LVPGA(args.dim_z, args.dim, args.size)
if args.ckpt != '':
print(f'Load {args.ckpt}')
ckpt = torch.load(args.ckpt)
model.load_state_dict(ckpt['model'])
args = ckpt['args']
print(model)
model = model.to(device)
model.train()
#optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
for i in range(args.epoch):
train(i, args, loader, model, optimizer, device)
torch.save(
{'model': model.state_dict(), 'args': args}, f'checkpoint/model_{i + 1}.pt'
)