This repository has been archived by the owner on Oct 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpulid.py
73 lines (60 loc) · 2.87 KB
/
pulid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from pulid_utils import colored
import os
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
import torchvision.transforms as T
import torch.nn.functional as F
import folder_paths
from encoders_flux import IDFormer, PerceiverAttentionCA
class PuLID(nn.Module):
def __init__(self, device="cpu", dtype=torch.float16, model_name='pulid_flux_v0.9.0.safetensors', id_weight=1.0):
super().__init__()
self.device = device
self.dtype = dtype
self.double_interval = 2
self.single_interval = 4
self.model_name = model_name
self.id_weight=id_weight
num_ca = 19 // self.double_interval + 38 // self.single_interval
if 19 % self.double_interval != 0:
num_ca += 1
if 38 % self.single_interval != 0:
num_ca += 1
self.pulid_encoder = IDFormer().to(self.device, self.dtype)
self.pulid_ca = nn.ModuleList([
PerceiverAttentionCA().to(self.device, self.dtype) for _ in range(num_ca)
])
@torch.inference_mode()
def generate_pulid_embedding(self, ante_embed, eva_cond, eva_hidden):
id_cond = torch.cat([ante_embed, eva_cond], dim=-1)
id_embedding = self.pulid_encoder(id_cond, eva_hidden)
id_uncond = torch.zeros_like(id_cond)
id_vit_hidden_uncond = []
for layer_idx in range(0, len(eva_hidden)):
id_vit_hidden_uncond.append(torch.zeros_like(eva_hidden[layer_idx]))
uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond)
self.id_embedding = id_embedding
self.uncond_id_embedding = uncond_id_embedding
def load_checkpoint(self, model_name='pulid_flux_v0.9.0.safetensors'):
print(colored(255,0,0,"PuLID") + ' Loading ' + model_name)
from safetensors.torch import load_file
download_path = os.path.join(folder_paths.models_dir, "pulid")
model_path = os.path.join(download_path, model_name)
if not os.path.exists(model_path):
print(colored(255,0,0,"PuLID") + f" Downloading PULID For Flux model to: {model_path}")
hf_hub_download('guozinan/PuLID', model_name, local_dir=download_path)
state_dict = load_file(model_path)
state_dict_dict = {}
for k, v in state_dict.items():
module = k.split('.')[0]
state_dict_dict.setdefault(module, {})
new_k = k[len(module) + 1:]
state_dict_dict[module][new_k] = v
#Load PuLID into the current module from the safetensor.
for module in state_dict_dict:
print(colored(255,0,0,"PuLID") + f' Loading {module}')
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
print(colored(255,0,0,"PuLID") + ' Done Loading')
del state_dict
del state_dict_dict