-
Notifications
You must be signed in to change notification settings - Fork 17
/
GRU4REC.py
71 lines (57 loc) · 2.88 KB
/
GRU4REC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
@version: 1.0
@author: Chao Chen
@contact: [email protected]
"""
import tensorflow.compat.v1 as tf
import module.coding as C
from model.Base import Sequential
from model.compat import cudnn_rnn, extender
class GRU4REC(Sequential):
""" Implementation of the paper ---
Hidasi B, Karatzoglou A, Baltrunas L, Tikk D.
Session-based recommendations with recurrent neural networks.
ICLR 2016.
"""
def __init__(self, num_items, FLAGS):
super().__init__(num_items, FLAGS)
with tf.variable_scope("GRU4REC"):
self.item_embs = C.Embedding(self.num_items, self.num_units, self.l2_reg,
zero_pad=True, scale=True, scope="item_embs")
self._cudnn_rnn = cudnn_rnn.CudnnGRU(
num_layers=FLAGS.num_blocks, num_units=self.num_units, direction='unidirectional',
kernel_initializer=tf.orthogonal_initializer(), name='GRU4REC/GRU')
self.output_bias = self.output_bias(inf_pad=True)
def __call__(self, features, is_training):
seqs_id = features['seqs_i']
seqs_units = self.item_embs(seqs_id)
# Dropout
seqs_units = tf.layers.dropout(seqs_units, rate=self.hidden_dropout_rate,
training=tf.convert_to_tensor(is_training))
seqs_masks = tf.expand_dims(tf.to_float(tf.not_equal(seqs_id, 0)), -1)
# Recurrency
with tf.variable_scope("S2PNM/Reccurency"):
h, _ = self._cudnn_rnn(tf.transpose(seqs_units, [1, 0, 2]))
h = tf.transpose(h, [1, 0, 2]) # mask the hidden states as dynamic_rnn did
seqs_outs = h * seqs_masks
if is_training:
seqs_outs = tf.reshape(seqs_outs, [tf.shape(seqs_id)[0] * self.seqslen, self.num_units])
else:
# only using the latest representations for making predictions
seqs_outs = tf.reshape(seqs_outs[:, -1], [tf.shape(seqs_id)[0], self.num_units])
# compute logits
logits = tf.matmul(seqs_outs, self.item_embs.lookup_table, transpose_b=True)
logits = tf.nn.bias_add(logits, self.output_bias)
return logits
def trainOp(self, loss):
global_step = tf.get_variable("global_step", shape=(), dtype=tf.int64, trainable=False)
add_gstep = global_step.assign_add(1)
# lrate = tf.train.exponential_decay(
# learning_rate=self.learning_rate, global_step=global_step,
# decay_steps=1000, decay_rate=0.9, staircase=True)
# optimizer = tf.train.AdamOptimizer(learning_rate=lrate, beta2=0.98, epsilon=1e-9)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta2=0.98, epsilon=1e-9)
optimizer = extender.clip_gradients_by_norm(optimizer, clip_norm=5.)
with tf.control_dependencies([add_gstep]):
train_op = optimizer.minimize(loss)
return train_op