diff --git a/constrainedML/multi_selective_drop_positive_linear_regression.py b/constrainedML/multi_selective_drop_positive_linear_regression.py index 3188754..ec84258 100644 --- a/constrainedML/multi_selective_drop_positive_linear_regression.py +++ b/constrainedML/multi_selective_drop_positive_linear_regression.py @@ -35,8 +35,8 @@ def __init__( self.max_coef_ = min_coef_ self.min_coef_ = max_coef_ - def fit(self, X, y, min_coef=None, max_coef=None): - X, y, X_offset, y_offset, X_scale = self._preprocess(X, y) + def fit(self, X, y, min_coef=None, max_coef=None, sample_weight=None): + X, y, X_offset, y_offset, X_scale = self._preprocess(X, y, sample_weight) original_feature_count = X.shape[-1] self.min_coef_ = self._verify_coef( diff --git a/constrainedML/selective_drop_positive_linear_regression.py b/constrainedML/selective_drop_positive_linear_regression.py index dc980b1..66795eb 100644 --- a/constrainedML/selective_drop_positive_linear_regression.py +++ b/constrainedML/selective_drop_positive_linear_regression.py @@ -9,8 +9,8 @@ class SelectiveDropPositiveLinearRegression(BaseSelectiveDropPositiveLinearRegression): """ """ - def fit(self, X, y, min_coef=None, max_coef=None): - X, y, X_offset, y_offset, X_scale = self._preprocess(X, y) + def fit(self, X, y, min_coef=None, max_coef=None, sample_weight=None): + X, y, X_offset, y_offset, X_scale = self._preprocess(X, y, sample_weight) feature_count = X.shape[-1] self.min_coef_ = self._verify_coef(feature_count, min_coef, -np.inf).flatten() self.max_coef_ = self._verify_coef(feature_count, max_coef, np.inf).flatten()