-
Notifications
You must be signed in to change notification settings - Fork 18
/
main.py
187 lines (161 loc) · 7.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import sys
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
train_loss = 0
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
train_loss += F.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
train_loss /= len(train_loader.dataset)
accuracy = correct / len(train_loader.dataset)
return train_loss, accuracy
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
accuracy = correct / len(test_loader.dataset)
return test_loss, accuracy
def construct_parser():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000,
metavar='N', help='input batch size for testing '
'(default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=None, metavar='S',
help='random seed (default: random number)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging '
'training status')
parser.add_argument('-i', '--input', required=True, help='Path to the '
'input data for the model to read')
parser.add_argument('-o', '--output', required=True, help='Path to the '
'directory to write output to')
return parser
def main(args):
#TODO: add checkpointing
use_cuda = not args.no_cuda and torch.cuda.is_available()
if not args.no_cuda and not use_cuda:
raise ValueError('You wanted to use cuda but it is not available. '
'Check nvidia-smi and your configuration. If you do '
'not want to use cuda, pass the --no-cuda flag.')
device = torch.device("cuda" if use_cuda else "cpu")
print(f'Using device: {torch.cuda.get_device_name()}')
# For reproducibility:
# c.f. https://pytorch.org/docs/stable/notes/randomness.html
if args.seed is None:
args.seed = torch.randint(0, 2**32, (1, )).item()
print(f'You did not set --seed, {args.seed} was chosen')
torch.manual_seed(args.seed)
if use_cuda:
if device.index:
device_str = f"{device.type}:{device.index}"
else:
device_str = f"{device.type}"
os.environ["CUDA_VISIBLE_DEVICES"] = device_str
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
# This does make things slower :(
torch.backends.cudnn.benchmark = False
config_args = [str(vv) for kk, vv in vars(args).items()
if kk in ['batch_size', 'lr', 'gamma', 'seed']]
model_name = '_'.join(config_args)
if not os.path.exists(args.output):
print(f'{args.output} does not exist, creating...')
os.makedirs(args.output)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.input, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.input, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
log_fh = open(f'{args.output}/{model_name}.log', 'w')
print('epoch,trn_loss,trn_acc,vld_loss,vld_acc', file=log_fh)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
best_loss = sys.float_info.max
for epoch in range(1, args.epochs + 1):
loss, acc = train(args, model, device, train_loader, optimizer, epoch)
vld_loss, vld_acc = test(args, model, device, test_loader)
print(f'{epoch},{loss},{acc},{vld_loss},{vld_acc}', file=log_fh)
scheduler.step()
if vld_loss < best_loss:
best_loss = vld_loss
torch.save(model.state_dict(),
f"{args.output}/{model_name}.best.pt")
torch.save(model.state_dict(), f"{args.output}/{model_name}.final.pt")
log_fh.close()
if __name__ == '__main__':
parser = construct_parser()
args = parser.parse_args()
main(args)