diff --git a/Basic Census Reporter API with Pandas.ipynb b/Basic Census Reporter API with Pandas.ipynb index 0bb823e..f576ad0 100644 --- a/Basic Census Reporter API with Pandas.ipynb +++ b/Basic Census Reporter API with Pandas.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "df = get_dataframe(column_names=True,level=1)" + "df = get_dataframe(tables='B01001',geoids='040|01000US',column_names=True,level=1)" ] }, { @@ -119,7 +119,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Top 5 States by Female Population" + "## Top 5 States in Midwest Region by % Female Population" ] }, { @@ -141,55 +141,61 @@ " Total\n", " Male\n", " Female\n", + " pct_female\n", " \n", " \n", " \n", " \n", - " 04000US06\n", - " California\n", - " 38332521\n", - " 19072246\n", - " 19260275\n", + " 04000US47\n", + " Tennessee\n", + " 6495978\n", + " 3174148\n", + " 3321830\n", + " 0.511367\n", " \n", " \n", - " 04000US48\n", - " Texas\n", - " 26448193\n", - " 13145494\n", - " 13302699\n", + " 04000US42\n", + " Pennsylvania\n", + " 12773801\n", + " 6243308\n", + " 6530493\n", + " 0.511241\n", " \n", " \n", - " 04000US36\n", - " New York\n", - " 19651127\n", - " 9536179\n", - " 10114948\n", + " 04000US39\n", + " Ohio\n", + " 11570808\n", + " 5658223\n", + " 5912585\n", + " 0.510992\n", " \n", " \n", - " 04000US12\n", - " Florida\n", - " 19552860\n", - " 9565609\n", - " 9987251\n", + " 04000US29\n", + " Missouri\n", + " 6044171\n", + " 2960402\n", + " 3083769\n", + " 0.510205\n", " \n", " \n", - " 04000US17\n", - " Illinois\n", - " 12882135\n", - " 6326778\n", - " 6555357\n", + " 04000US26\n", + " Michigan\n", + " 9895622\n", + " 4858138\n", + " 5037484\n", + " 0.509062\n", " \n", " \n", "\n", "" ], "text/plain": [ - " name Total Male Female\n", - "04000US06 California 38332521 19072246 19260275\n", - "04000US48 Texas 26448193 13145494 13302699\n", - "04000US36 New York 19651127 9536179 10114948\n", - "04000US12 Florida 19552860 9565609 9987251\n", - "04000US17 Illinois 12882135 6326778 6555357" + " name Total Male Female pct_female\n", + "04000US47 Tennessee 6495978 3174148 3321830 0.511367\n", + "04000US42 Pennsylvania 12773801 6243308 6530493 0.511241\n", + "04000US39 Ohio 11570808 5658223 5912585 0.510992\n", + "04000US29 Missouri 6044171 2960402 3083769 0.510205\n", + "04000US26 Michigan 9895622 4858138 5037484 0.509062" ] }, "execution_count": 4, @@ -198,19 +204,21 @@ } ], "source": [ - "df.sort('Female',ascending=False).head(5)" + "df = get_dataframe(tables='B01001',geoids='040|02000US2',column_names=True,level=1)\n", + "df['pct_female'] = df['Female'] / df['Total']\n", + "df.sort('pct_female',ascending=False).head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Top 5 States by Male Population" + "## Top 5 Tennesse Counties by % Male Population" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -227,64 +235,72 @@ " Total\n", " Male\n", " Female\n", + " pct_male\n", " \n", " \n", " \n", " \n", - " 04000US06\n", - " California\n", - " 38332521\n", - " 19072246\n", - " 19260275\n", + " 05000US47095\n", + " Lake County, TN\n", + " 7773\n", + " 4897\n", + " 2876\n", + " 0.630001\n", " \n", " \n", - " 04000US48\n", - " Texas\n", - " 26448193\n", - " 13145494\n", - " 13302699\n", + " 05000US47129\n", + " Morgan County, TN\n", + " 21964\n", + " 12126\n", + " 9838\n", + " 0.552085\n", " \n", " \n", - " 04000US12\n", - " Florida\n", - " 19552860\n", - " 9565609\n", - " 9987251\n", + " 05000US47181\n", + " Wayne County, TN\n", + " 16996\n", + " 9370\n", + " 7626\n", + " 0.551306\n", " \n", " \n", - " 04000US36\n", - " New York\n", - " 19651127\n", - " 9536179\n", - " 10114948\n", + " 05000US47069\n", + " Hardeman County, TN\n", + " 26897\n", + " 14670\n", + " 12227\n", + " 0.545414\n", " \n", " \n", - " 04000US17\n", - " Illinois\n", - " 12882135\n", - " 6326778\n", - " 6555357\n", + " 05000US47007\n", + " Bledsoe County, TN\n", + " 12853\n", + " 6951\n", + " 5902\n", + " 0.540808\n", " \n", " \n", "\n", "" ], "text/plain": [ - " name Total Male Female\n", - "04000US06 California 38332521 19072246 19260275\n", - "04000US48 Texas 26448193 13145494 13302699\n", - "04000US12 Florida 19552860 9565609 9987251\n", - "04000US36 New York 19651127 9536179 10114948\n", - "04000US17 Illinois 12882135 6326778 6555357" + " name Total Male Female pct_male\n", + "05000US47095 Lake County, TN 7773 4897 2876 0.630001\n", + "05000US47129 Morgan County, TN 21964 12126 9838 0.552085\n", + "05000US47181 Wayne County, TN 16996 9370 7626 0.551306\n", + "05000US47069 Hardeman County, TN 26897 14670 12227 0.545414\n", + "05000US47007 Bledsoe County, TN 12853 6951 5902 0.540808" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.sort('Male',ascending=False).head(5)" + "df = get_dataframe(tables='B01001',geoids='050|04000US47',column_names=True,level=1)\n", + "df['pct_male'] = df['Male'] / df['Total']\n", + "df.sort('pct_male',ascending=False).head(5)" ] } ],