-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibsolv.cu
executable file
·352 lines (331 loc) · 11 KB
/
libsolv.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include "libsolv.h"
__device__ void cudaDeviceSpmvCSR(double* dx, double* db, double* dA, int* djA,
int* diA) {
__syncthreads();
int i = threadIdx.x + blockDim.x * blockIdx.x;
double sum = 0.0;
int nnz = diA[blockDim.x];
for (int j = diA[threadIdx.x]; j < diA[threadIdx.x + 1]; j++) {
sum += db[djA[j] + blockDim.x * blockIdx.x] * dA[j + nnz * blockIdx.x];
}
__syncthreads();
dx[i] = sum;
__syncthreads();
}
__device__ void cudaDeviceSpmvCSC(double* dx, double* db, double* dA, int* djA,
int* diA, int n_shr_empty) {
double mult;
extern __shared__ double sdata[];
int i = threadIdx.x + blockDim.x * blockIdx.x;
__syncthreads();
dx[i] = 0.0;
__syncthreads();
int nnz = diA[blockDim.x];
for (int j = diA[threadIdx.x]; j < diA[threadIdx.x + 1]; j++) {
mult = db[i] * dA[j + nnz * blockIdx.x];
atomicAdd_block(&(dx[djA[j] + blockDim.x * blockIdx.x]), mult);
}
__syncthreads();
}
__device__ void cudaDeviceSpmvCSD(double* dx, double* db, double* dA, int* djA,
int* diA) {
int tid = threadIdx.x + blockDim.x * blockIdx.x;
__syncthreads();
dx[tid] = 0.0;
__syncthreads();
int nnz = 1118;
for (int iDiag = 0; iDiag < blockDim.x; iDiag++) {
if (threadIdx.x < diA[iDiag + 1] - diA[iDiag]) {
int dAi = diA[iDiag] + threadIdx.x + nnz * blockIdx.x;
int dbi = djA[diA[iDiag] + threadIdx.x] + blockDim.x * blockIdx.x;
int dxi = ((iDiag + djA[diA[iDiag] + threadIdx.x]) % blockDim.x) +
blockDim.x * blockIdx.x;
dx[dxi] += db[dbi] * dA[dAi];
}
__syncthreads();
}
}
__device__ void cudaDeviceSpmvBoolDet(double* dx, double* db, double* dA,
int* diA) {
int tid = threadIdx.x + blockDim.x * blockIdx.x;
__syncthreads();
dx[tid] = 0.0;
__syncthreads();
}
__device__ void cudaDeviceSpmvCUID(double* dx, double* db, double* dA,
int* djA) {
int tid = threadIdx.x + blockDim.x * blockIdx.x;
__syncthreads();
dx[tid] = 0.0;
__syncthreads();
int nnz = 1118;
int iRow = threadIdx.x;
__syncthreads();
for (int row = 0; row < blockDim.x; row++) {
if (djA[threadIdx.x + row * blockDim.x] >= 0) {
dx[iRow + blockDim.x * blockIdx.x] +=
db[tid] * dA[djA[threadIdx.x + row * blockDim.x] + nnz * blockIdx.x];
#ifdef DEBUG_CUID
printf("dx db dA djA %lf %lf %d\n", dx[iRow], db[tid],
dA[djA[tid + row * blockDim.x]], djA[tid + row * blockDim.x]);
#endif
}
iRow++;
if (iRow >= blockDim.x) {
iRow = 0;
}
__syncthreads();
}
}
__device__ void cudaDeviceSpmvCSRVector(double* dx, double* db, double* dA,
int* djA, int* diA, int n_shr_empty) {
int t = threadIdx.x;
int warpSize = 32;
int lane = t & (warpSize - 1);
int warpsPerBlock = blockDim.x / warpSize;
int row = (blockIdx.x * warpsPerBlock) + (t / warpSize);
extern __shared__ double vals[];
unsigned int tid = threadIdx.x;
if (tid < n_shr_empty) vals[tid + blockDim.x] = 0.;
int rowStart = diA[row];
int rowEnd = diA[row + 1];
double sum = 0.;
for (int j = rowStart + lane; j < rowEnd; j += warpSize) {
int col = djA[j];
sum += dA[j] * db[col];
}
vals[t] = sum;
__syncthreads();
if (lane < 16) vals[t] += vals[t + 16];
if (lane < 8) vals[t] += vals[t + 8];
if (lane < 4) vals[t] += vals[t + 4];
if (lane < 2) vals[t] += vals[t + 2];
if (lane < 1) vals[t] += vals[t + 1];
__syncthreads();
if (lane == 0) {
dx[row] = vals[t];
}
}
#ifdef CSR_ADAPTIVE
__device__ int devicenextPowerOfTwo(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
__device__ void cudaDevicedotxyCSRReduce(double* g_idata, double* g_idata2,
double* g_odata, int n,
int n_shr_empty, int n_shr_len) {
extern __shared__ double sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
__syncthreads();
if (tid < n_shr_empty) sdata[tid + blockDim.x] = 0.;
__syncthreads();
sdata[tid] = g_idata[i] * g_idata2[i];
__syncthreads();
for (unsigned int s = (n_shr_len) / 2; s > 0; s >>= 1) {
if (tid < s) sdata[tid] += sdata[tid + s];
__syncthreads();
}
*g_odata = sdata[0];
__syncthreads();
}
__device__ void cudaDeviceSpmvCSRReduce(double* dx, double* db, int nrows,
double* dA, int* djA, int* diA) {
__syncthreads();
int row = threadIdx.x + blockDim.x * blockIdx.x;
double sum = 0.0;
int nnz = diA[blockDim.x];
int n_iters = nnz / blockDim.x; // todo /2?
for (int i = 0; i < n_iters; i++) {
int offsetdA = diA[threadIdx.x + 1] - diA[threadIdx.x];
int n_shr_len = devicenextPowerOfTwo(offsetdA);
int n_shr_empty = n_shr_len - (offsetdA);
int j = row;
dx[row] = db[djA[j] + blockDim.x * blockIdx.x] * dA[j + nnz * blockIdx.x];
int idx = threadIdx.x / offsetdA;
cudaDevicedotxyCSRReduce(&db[djA[j] + blockDim.x * blockIdx.x],
&dA[j + nnz * blockIdx.x], &dx[idx], n_shr_empty,
n_shr_len);
}
__syncthreads();
int residual = nnz - (blockDim.x * n_iters);
if (threadIdx.x < residual) {
}
}
#endif
#ifdef DEV_CSP
__device__ void cudaDeviceSpmvCSP(double* dx, double* db, double* dA, int* djA,
int* diA) {
extern __shared__ double sdata[];
int i = threadIdx.x + blockDim.x * blockIdx.x;
__syncthreads();
dx[i] = 0.;
int nnz = 1118;
// pending: maxDia show be an array of nrows, since each row has a different
// size
int maxDiA = 64; // Check in CPU and pass as parameter
__syncthreads();
// if(i==0) diA[threadIdx.x]=0; //debug to show the error
for (int j = 0; j < maxDiA; j++) {
if (j < diA[threadIdx.x]) {
// Not working because it need a size for each iter j
// int lenj=djAi[j];
// dx[djA[threadIdx.x+lenj*j]+blockDim.x*blockIdx.x]+=
// db[i]*dA[(threadIdx.x+lenj*j)+nnz*blockIdx.x];
// if(threadIdx.x+blockDim.x*j >= blockDim.x)
// printf("E1 %d %d\n",threadIdx.x+blockDim.x*j,j);
// if(djA[threadIdx.x+blockDim.x*j] >= blockDim.x)
// printf("djA[threadIdx.x+blockDim.x*j] >= blockDim.x\n");
dx[djA[threadIdx.x]] += db[i] * dA[(threadIdx.x + blockDim.x * j)];
}
__syncthreads();
}
__syncthreads();
}
#endif
__device__ void cudaDeviceSpmv(double* dx, double* db, double* dA, int* djA,
int* diA, int n_shr_empty) {
#ifdef CSR
cudaDeviceSpmvCSR(dx, db, dA, djA, diA);
#elif CSC
cudaDeviceSpmvCSC(dx, db, dA, djA, diA);
#elif DEV_CSP
cudaDeviceSpmvCSP(dx, db, dA, djA, diA);
#elif CSD
cudaDeviceSpmvCSD(dx, db, dA, djA, diA);
#elif CBD
cudaDeviceSpmvBoolDet(dx, db, dA, djA);
#elif CUID
cudaDeviceSpmvCUID(dx, db, dA, djA);
#elif CSR_VECTOR
cudaDeviceSpmvCSRVector(dx, db, dA, djA, diA);
#elif CSR_ADAPTIVE
cudaDeviceSpmvCSRReduce(dx, db, dA, djA, diA);
#else
cudaDeviceSpmvCSR(dx, db, dA, djA, diA);
#endif
}
__device__ void warpReduce_2(volatile double* sdata, unsigned int tid) {
unsigned int blockSize = blockDim.x;
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
__device__ void cudaDevicedotxy(double* g_idata1, double* g_idata2,
double* g_odata, int n_shr_empty) {
extern __shared__ double sdata[];
unsigned int tid = threadIdx.x;
__syncthreads();
if (tid < n_shr_empty) sdata[tid + blockDim.x] = 0.;
__syncthreads();
// print_double(sdata,73,"sdata");
#ifdef DEV_cudaDevicedotxy_2
// used for compare with cpu
sdata[0] = 0.;
__syncthreads();
if (tid == 0) {
for (int j = 0; j < blockDim.x; j++) {
sdata[0] += g_idata1[j + blockIdx.x * blockDim.x] *
g_idata2[j + blockIdx.x * blockDim.x];
}
}
#else
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n_shr_empty) sdata[tid + blockDim.x] = 0.;
__syncthreads();
sdata[tid] = g_idata1[i] * g_idata2[i];
__syncthreads();
unsigned int blockSize = blockDim.x + n_shr_empty;
if ((blockSize >= 1024) && (tid < 512)) {
sdata[tid] += sdata[tid + 512];
}
__syncthreads();
if ((blockSize >= 512) && (tid < 256)) {
sdata[tid] += sdata[tid + 256];
}
__syncthreads();
if ((blockSize >= 256) && (tid < 128)) {
sdata[tid] += sdata[tid + 128];
}
__syncthreads();
if ((blockSize >= 128) && (tid < 64)) {
sdata[tid] += sdata[tid + 64];
}
__syncthreads();
if (tid < 32) warpReduce_2(sdata, tid);
#endif
__syncthreads();
*g_odata = sdata[0];
__syncthreads();
}
__device__ void solveBcgCudaDeviceCVODE(ModelDataGPU* md) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
double alpha, rho0, omega0, beta, rho1, temp1, temp2;
alpha = rho0 = omega0 = beta = rho1 = temp1 = temp2 = 1.0;
md->dn0[i] = 0.0;
md->dp0[i] = 0.0;
cudaDeviceSpmv(md->dr0, md->dx, md->dA, md->djA, md->diA, md->n_shr_empty);
md->dr0[i] = md->dtempv[i] - md->dr0[i];
md->dr0h[i] = md->dr0[i];
int it = 0;
while (it < 1000 && temp1 > 1.0E-30) {
cudaDevicedotxy(md->dr0, md->dr0h, &rho1, md->n_shr_empty);
beta = (rho1 / rho0) * (alpha / omega0);
md->dp0[i] = beta * md->dp0[i] + md->dr0[i] - md->dn0[i] * omega0 * beta;
md->dy[i] = md->ddiag[i] * md->dp0[i];
cudaDeviceSpmv(md->dn0, md->dy, md->dA, md->djA, md->diA, md->n_shr_empty);
cudaDevicedotxy(md->dr0h, md->dn0, &temp1, md->n_shr_empty);
alpha = rho1 / temp1;
md->ds[i] = md->dr0[i] - alpha * md->dn0[i];
md->dx[i] += alpha * md->dy[i];
md->dy[i] = md->ddiag[i] * md->ds[i];
cudaDeviceSpmv(md->dt, md->dy, md->dA, md->djA, md->diA, md->n_shr_empty);
md->dr0[i] = md->ddiag[i] * md->dt[i];
cudaDevicedotxy(md->dy, md->dr0, &temp1, md->n_shr_empty);
cudaDevicedotxy(md->dr0, md->dr0, &temp2, md->n_shr_empty);
omega0 = temp1 / temp2;
md->dx[i] += omega0 * md->dy[i];
md->dr0[i] = md->ds[i] - omega0 * md->dt[i];
md->dt[i] = 0.0;
cudaDevicedotxy(md->dr0, md->dr0, &temp1, md->n_shr_empty);
temp1 = sqrt(temp1);
rho0 = rho1;
it++;
__syncthreads();
}
}
__global__ void cudaGlobalCVode(ModelDataGPU md_object) {
ModelDataGPU* md = &md_object;
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < md->nrows) {
solveBcgCudaDeviceCVODE(md);
}
}
int nextPowerOfTwoBCG(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
void solveGPU_block(ModelDataGPU* mGPU) {
int len_cell = mGPU->nrows / mGPU->n_cells;
int threads_block = len_cell;
int blocks = mGPU->n_cells;
int n_shr_memory = nextPowerOfTwoBCG(len_cell);
mGPU->n_shr_empty = n_shr_memory - threads_block;
cudaGlobalCVode<<<blocks, threads_block, n_shr_memory * sizeof(double)>>>(
*mGPU);
}