Skip to content

Latest commit

 

History

History
184 lines (131 loc) · 4.89 KB

README.md

File metadata and controls

184 lines (131 loc) · 4.89 KB

Langchain examples

The examples in this folder shows how to use LangChain with ipex-llm on Intel GPU.

1. Install ipex-llm

Follow the instructions in GPU Install Guide to install ipex-llm

2. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1

3.2 Configurations for Windows

For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Run the examples

4.1. Streaming Chat

Install dependencies:

pip install langchain==0.0.184
pip install -U pandas==2.0.3

Then execute:

python chat.py -m MODEL_PATH -q QUESTION

arguments info:

  • -m MODEL_PATH: required, path to the model
  • -q QUESTION: question to ask. Default is What is AI?.

4.2. RAG (Retrival Augmented Generation)

Install dependencies:

pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3

Then execute:

python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]

arguments info:

  • -m MODEL_PATH: required, path to the model.
  • -q QUESTION: question to ask. Default is What is IPEX?.
  • -i INPUT_PATH: path to the input doc.

4.3. Low Bit

The low_bit example (low_bit.py) showcases how to use use langchain with low_bit optimized model. By save_low_bit we save the weights of low_bit model into the target folder.

Note: save_low_bit only saves the weights of the model. Users could copy the tokenizer model into the target folder or specify tokenizer_id during initialization.

Install dependencies:

pip install langchain==0.0.184
pip install -U pandas==2.0.3

Then execute:

python low_bit.py -m <path_to_model> -t <path_to_target> [-q <your question>]

Runtime Arguments Explained:

  • -m MODEL_PATH: Required, the path to the model
  • -t TARGET_PATH: Required, the path to save the low_bit model
  • -q QUESTION: the question

4.4 vLLM

The vLLM example (vllm.py) showcases how to use langchain with ipex-llm integrated vLLM engine.

Install dependencies:

pip install "langchain<0.2"

Besides, you should also install IPEX-LLM integrated vLLM according instructions listed here

Runtime Arguments Explained:

  • -m MODEL_PATH: Required, the path to the model
  • -q QUESTION: the question
  • -t MAX_TOKENS: max tokens to generate, default 128
  • -p TENSOR_PARALLEL_SIZE: Use multiple cards for generation
  • -l LOAD_IN_LOW_BIT: Low bit format for quantization
Single card

The following command shows an example on how to execute the example using one card:

python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 1 -l sym_int4
Multi cards

To use -p TENSOR_PARALLEL_SIZE option, you will need to use our docker image: intelanalytics/ipex-llm-serving-xpu:latest. For how to use the image, try check this guide.

The following command shows an example on how to execute the example using two cards:

export CCL_WORKER_COUNT=2
export FI_PROVIDER=shm
export CCL_ATL_TRANSPORT=ofi
export CCL_ZE_IPC_EXCHANGE=sockets
export CCL_ATL_SHM=1
python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 2 -l sym_int4